| 研究生: |
蔡勝霖 Tsai, Sheng-Lin |
|---|---|
| 論文名稱: |
不同冷端與熱端熱交換器組合對史特靈熱泵性能的影響 Effects of Changing Hot and Cold Ends' Heat Exchanger Combinations on Performance of Stirling Heat Pump |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 史特靈熱泵 、熱交換器設計 、性能係數 、放熱率 |
| 外文關鍵詞: | Stirling heat pump, Heat exchanger, Coefficient of performance, Heat rejection rate |
| 相關次數: | 點閱:106 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為探討冷端與熱端熱交換器改善史特靈熱泵性能。以實驗得到數值來分析冷端、熱端熱交換器的設計,並比較不同熱交換器對史特靈熱泵性能之影響。理論方面,本研究參考非理想絕熱模型,並以不同熱交換器之設計做理論模型的建立,考慮到壁面和工作流體、腔室壁面間和壁面與水套內流體的熱傳。將實驗值與模擬理論值互相驗證。本研究探討五種冷端熱交換器:(1)鋁製內外鰭片式熱交換器搭配小鋁熱沉(C1)、(2)銅製內外鰭片式熱交換器搭配小銅製熱沉(C2)、(3)內鰭片外泡沫銅式熱交換器搭配泡沫銅(C3)、(4)銅製內外鰭片式熱交換器搭配大鋁製熱沉(C4)、(5)銅製內外鰭片式熱交換器搭配大銅製熱沉(C5);及三種熱端熱交換器:(1)鋁製120片內鰭片之內外鰭片式熱交換器(H1)、(2)銅製120片內鰭片之內外鰭片式熱交換器(H2)、(3)鋁製120片內鰭片外泡沫銅式熱交換器(H3)。本研究可得知在壓力4 bar與轉速500 rpm之操作條件下,最佳組合為冷端熱交換器C4與熱端熱交換器H2,〖COP〗_M可達到2.39。
This study aims to investigate the improvement of Stirling heat pump performance with hot and cold ends’ heat exchanger combinations. From the experimental data obtained, to analyze the influence of different hot and cold ends’ heat exchanger combinations on the Stirling heat pump. From the theoretical model, this study refers to the non-ideal adiabatic model. The coefficient of performance (COP) is analyzed by the thermodynamic model. The experimental value and the theoretical value are verified against each other. Operating conditions at 4 bar charged pressure and 500 rpm rotational speed, the highest performance of cold and hot ends’ heat exchanger combinations is Type 4, and the 〖COP〗_M can reach up to 2.39.
[1] 楊借春,氣候資源的法律概念及其屬性探討,氣象與環境學報,pp. 39-44,2007。
[2] 姚楊,水循環熱泵空調系統設計,第二版,化學工業出版社,北京,2011。
[3] 陳東,熱泵技術手冊,第二版,化學工業出版社,北京,2019。
[4] N. L. S. Carnot, Reflections on the motive power of fire, John Wiley & Sons, Inc, London, pp. 85-86, 1897.
[5] M. Zogg, History of heat pumps-swiss contributions and international milestones, Swiss federal office of energy, pp. 9, 2008.
[6] C. Duan, C. Sun, S. Shu, G. Ding, C. Jing, and J. Chang, “Similarity Design and Experimental Investigation of a Beta‐Type Stirling Engine with a Rhombic Drive Mechanism,” International Journal of Energy Research, Vol. 39, no. 2, pp. 191-201, 2015.
[7] 陳宏信,瓩級史特靈熱泵之實驗與理論分析,國立成功大學航空及太空工程學系碩士學位論文,台南,2019。
[8] 游硯評,熱交換器設計對史特靈熱泵性能的影響,國立成功大學航空及太空工程學系碩士學位論文,台南,2021。
[9] T. Gadelkareem, A. EldeinHussin, G. Hennes, and A. El-Ehwany, “Stirling Cycle for Hot and Cold Drinking Water Dispenser, ” International Journal of Refrigeration, Vol. 99, pp. 126-137, 2019.
[10] C.H. Cheng, H.S. Yang, and H.X. Chen, “Development of a Beta‐Type Stirling Heat Pump with Rhombic Drive Mechanism by a Modified Non‐Ideal Adiabatic Model, ” International Journal of Energy Research, Vol. 44, no. 7, pp. 5197-5208, 2020.
[11] T.M. Tveit, “Application of an Industrial Heat Pump for Steam Generation Using District Heating as a Heat Source, ”12 th IEA heat pump conference, 2017.
[12] K. Nam and S. Jeong, “Novel Flow Analysis of Regenerator Under Oscillating Flow with Pulsating Pressure, ” Cryogenics, Vol. 45, pp. 368-379, 2005.
[13] E. Açıkkalp, S.Y. Kandemir, and M.H. Ahmadi, “Solar Driven Stirling Engine-Chemical Heat Pump-Absorption Refrigerator Hybrid System As Environmental Friendly Energy System,” Journal of Environmental Management, Vol. 232, pp. 455-461, 2019.
[14] R. Wang, J. Hu, Z. Jia, L. Zhang, and E. Luo, “Study on The Temperature Adaptability of Free-Piston Stirling Heat Pump,” Energy Conversion and Management, Vol. 249, p. 114864, 2021.
[15] A. Batooei and A. Keshavarz, “A Gamma Type Stirling Refrigerator Optimization:An Experimental and Analytical Investigation,” International Journal of Refrigeration, Vol. 91, pp. 89-100, 2018.
[16] M. Z. Getie, F. Lanzetta, S. Bégot, B. T. Admassu, and S. Djetel-Gothe, “A Non-Ideal Second Order Thermal Model with Effects of Losses for Simulating Beta-Type Stirling Refrigerating Machine,” International Journal of Refrigeration, Vol. 130, pp. 413-423, 2021.
[17] M. Z. Getie, F. Lanzetta, S. Bégot, B. T. Admassu, and A. A. Hassen, “Reversed Regenerative Stirling Cycle Machine for Refrigeration Application: A Review,” International Journal of Refrigeration, Vol. 118, pp. 173-187, 2020.
[18] B. Jia, R. Mikalsen, A. Smallbone, and A. P. Roskilly, “A Study and Comparison of Frictional Losses in Free-Piston Engine and Crankshaft Engines,” Applied Thermal Engineering, Vol. 140, pp. 217-224, 2018.
[19] 蔡東融,菱形驅動機構史特靈引擎之熱力循環量測,國立成功大學航空及太空工程學系碩士學位論文,台南,2009。
[20] F. Ahmed, H. Hulin, and A. M. Khan, “Numerical Modeling and Optimization of Beta-Type Stirling Engine,” Applied Thermal Engineering, Vol. 149, pp. 385-400, 2019.
[21] C. Borgnakke and R.E. Sonntag, Fundamentals of thermodynamics, 7 th Ed, John Wiley & Sons, Inc, United States of America, pp. 12-26, 2010.
[22] C.Y. Zhao, W.Lu, and S.A. Tassou, “Thermal Analysis on Metal-Foam Filled Heat Exchangers. Part II: Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, Vol. 49, no. 15-16, pp. 2762-2770, 2006.
[23] K. Ando, Y. Imai, H. Hirai, and A. Nakayama, “Heat Transfer Enhancement Using a Pin Fin Heat Sink Filled with Metal Foams,” Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 77, no. 782, pp. 1958-1967, 2011.
[24] Y. Li, L. Gong, M. Xu, and Y. Joshi, “Thermal Performance of Metal Foam Heat Sink With Pin Fins for Nonuniform Heat Flux Electronics Cooling,” Journal of Electronic Packaging, Vol. 143, no. 1, p. 011006, 2021.
[25] U. Munir, S.A.R. Gardezi, Z. Anwar, and M.S. Kamran, “Oscillatory Heat Transfer Correlation for Annular Mini Channel Stirling Heater,” Case Studies in Thermal Engineering, Vol. 21, p. 100664, 2020.
[26] S. Chang, K. Chiang, Y. Zheng, C. Huang, and P.H. Chen, “Detailed Heat Transfer Measurements of Curved Fin Channels,” Heat Transfer Engineering, Vol. 29, no. 10, pp. 849-863, 2008.
[27] O.K. Siddiqui and S.M. Zubair, “Efficient Energy Utilization Through Proper Design of Microchannel Heat Exchanger Manifolds: a Comprehensive Review,” Renewable and Sustainable Energy Reviews, Vol. 74, pp. 969-1002, 2017.
[28] A. Bhattacharya and R.L. Mahajan, “Finned Metal Foam Heat Sinks for Electronics Cooling in Forced Convection,” Journal of Electronic Packaging, Vol. 124, no. 3, pp. 155-163, 2002.
[29] 何彥慶,發泡金屬散熱鰭片在自然對流條件下之熱傳性能,國立交通大學機械工程學所碩士論文,新竹,2012。
[30] C.H. Cheng and Y.H. Tan, “Numerical Optimization of a Four-Cylinder Double-Acting Stirling Engine Based on Non-Ideal Adiabatic Thermodynamic Model and SCGM Method,” Energies, Vol. 13, no. 8, 2020.
[31] A.J. Organ, The Regenerator and Stirling Engine, Mechanical Engineering Press, London, 1997.
[32] S. Choi, K. Nam, and S. Jeong, “Investigation on The Pressure Drop Characteristics of Cryocooler Regenerators Under Oscillating Flow and Pulsating Pressure Conditions,” Cryogenics, Vol. 44, no. 3, pp. 203-210, 2004.
[33] R.A. Ackermann, Cryogenic Regenerative Heat Exchangers, Springer Science & Business Media, New York, 2013.
[34] W.M. Rohsenow, J.P. Hartnett, and Y.I. Cho, Handbook of Heat Transfer, New York, 1998.
[35] T.L. Bergman, T.L. Bergman, F.P. Incropera, D.P. Dewitt, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, United States of America, 2011.
[36] P.D. Jaeger, C. T’Joen, H. Huisseune, B. Ameel, S.D Schampheleire, and M.D Paepe, “Assessing The Influence of Four Bonding Methods on The Thermal Contact Resistance of Open-Cell Aluminum Foam, “ International Journal of Heat and Mass Transfer, Vol. 55, no. 21-22, pp. 6200-6210, 2012.
[37] V.V. Calmidi, and R.L. Mahajan, “Forced Convection in High Porosity Metal Foams,” ASME J. Heat Transfer, Vol. 122, no. 3, pp. 557-565, 2000.