簡易檢索 / 詳目顯示

研究生: 林郁
Lin, Yuh
論文名稱: 後拉法預鑄節塊墩柱預力損失之監測與評估
Monitoring and Assessment of Prestress Losses of Post-Tensioning Precast Segmental Bridges Pier
指導教授: 方一匡
Fang, I-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 預鑄墩柱後拉法乾縮潛變預力損失有效預力
外文關鍵詞: precast pier, post-tensioning, shrinkage, creep, prestress loss, effective prestress
相關次數: 點閱:81下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 預鑄節塊施工法是一種常見的橋梁施工法,在台灣多見於箱型梁結構。本研究旨在探討高雄港聯外道路高架橋預鑄節塊墩柱之預力變化。本研究於預鑄墩柱節塊埋設應變計,同時製作混凝土圓柱試體進行材料試驗,藉此監測混凝土變形,並與規範預測式比較,評估預力損失量。
    墩柱節塊之乾縮應變在澆鑄混凝土270天即已幾乎發展完全,其值在260×10^(-6)左右。將墩柱節塊與圓柱試體潛變試驗之相關參數代入ACI-209潛變預測式,兩者有一比例關係(ξ),圓柱試體之潛變係數值乘上ξ後與墩柱節塊之潛變應變發展相當接近,表示可由潛變架試驗結果推估得到墩柱之潛變應變行為。
    根據墩柱混凝土應變實測值與理論預測式進行長期預力損失評估,於施預力後50年,P13~P15墩柱的有效預力為13,420 kg⁄cm^2 ,為起始預力的93.5%;P16墩柱的有效預力為13,639 kg⁄cm^2 ,為起始預力的95.1%,均大於設計值的10,000 kg⁄cm^2 。

    Precast segmental construction method is often used in bridge construction, but it’s more common in the box girder in Taiwan. This thesis aims at studying the prestress losses of segmental pier columns in the viaduct connecting Kaohsiung Harbor and First Freeway. In experimental study, the monitoring of concrete strain variations in pier segments and the material tests of concrete cylinder were conducted. The assessment of prestress losses was carried out based on the measured strains and design codes.
    The measured shrinkage strain of segmental bridges piers was 260×10^(-6) after 270 days of casting and the rate of increase in strain was not pronounced. Using the related parameters for the prediction of creep strain by ACI-209 methods for the concrete cylinder specimen and the piers, a proportion ξ between them can be found. The creep strain of pier column can be predicted by multiplying ξ to that of concrete cylinder. Therefore, we can estimate the creep strain of pier column based on the creep test of concrete cylinder.
    According to the currently measured concrete strain and prediction equation of the long-term prestress losses, the effective prestress of the piers, after 50 years of applied prestress, for P13~P15 is estimated as 13,420 kg⁄cm^2 , which is 93.5% of the initial prestress; while for the pier P16, the effective prestress is 13,639 kg⁄cm^2 , which is 95.1% of the initial prestress. The estimated effective prestress is greater than the design value of 10,000 kg⁄cm^2 .

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號表 XI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究範疇 1 1-3高雄港聯外高架橋工程簡介 2 第二章 文獻回顧 4 2-1 混凝土的乾縮與潛變 4 2-2 乾縮與潛變預測模式 9 2-2-1 ACI-209預測模式 9 2-2-2 CEB-FIP 預測模式 12 2-2-3 案例之材料及環境參數 16 2-3 預力損失 18 2-3-1 預力損失的原因 18 2-3-2 摩擦損失 19 2-3-3 混凝土的彈性應變導致之預力損失 22 2-3-4 鋼腱在錨碇位置之滑動引起的預力損失 23 2-3-5 混凝土的收縮與潛變所引起的預力損失 25 2-3-6 鋼腱鬆弛引起之預力損失 26 2-3-7 AASHTO 規範預力損失求法 26 2-4 振弦式應變計之量測原理 28 第三章 試驗規劃 31 3-1 實驗架構 31 3-2 現地試驗規劃與儀器安裝細部 31 3-2-1 預鑄墩柱節塊 31 3-2-2 儀器安裝與試驗規劃 33 3-3 材料試驗 38 3-3-1 乾縮與潛變試驗 38 3-3-2 抗壓強度與彈性模數試驗 41 第四章 結果與討論 43 4-1 材料試驗 43 4-1-1 抗壓強度 43 4-1-2 彈性模數 44 4-1-3 混凝土收縮及潛變試驗 45 4-2 現地量測結果 53 4-2-1 墩柱之乾縮應變 54 4-2-2 墩柱在施工中之應變 62 4-2-3 墩柱之潛變應變 70 4-3 有效預力計算與評估 86 4-3-1 預力損失計算 86 4-3-2 有效預力評估 96 第五章 結論 101 參考文獻 103

    1. ACI Committee 363, “State-of-the-Art-Report on High-Strength Concrete,” American Concrete Institute, 1997.
    2. ACI Committee 209R-92, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures,” American Concrete Institute, Oct. 1978, pp.2-12.
    3. American Association of State Highway and Transportation Officials, “AASHTO Standard Specifications for Highway Bridges,” 15th Edition, Washington, DC, 1993.
    4. Arzoumanidis, S. G.; Burg, R. G.; and Schmid, I., “Creep and Shrinkage in Composite Cable-Stayed Bridges,” Transportation Research Record 1290, 1991, pp.20-27.
    5. ASTM C39, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” American Association of State Highway and Transportation Officials, 1994.
    6. ASTM C469, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
    7. ASTM C512, “Standard Test Method for Creep of Concrete in Compression,” American Association of State Highway and Transportation Officials, 1994.
    8. Branson, D. E., and Christiason, M. L., “Time Dependent Concrete Properties Related to Design-Strength and Elastic Properties, Creep, and Shrinkage,” SP-27-13, American Concrete Institute, Detroit, 1971, pp. 257-277.
    9. CEB-FIP, “Model Code for Concrete Structure,” Comite Euro-Internation du Betion, 1990.
    10. Lin, T. Y., and Burns, N. H., “Design of Prestressed Concrete Structure,” 3rd Edition in SI units, 1982, 646 pp.
    11. Neville, A. M., “Properties of Concrete,” Piman, London, 1981, 671 pp.
    12. Yao, Y., and Li, J., “A Study on Creep and Drying Shrinkage of High Performance Concrete,” Cement and Concrete Research, V. 31, Issue 8, 2001, pp.1203-1206.
    13. Young, J. F., and Mindess, S., “Concrete,” Prentice-Hall, New Jersey, 1981, pp.481-500.
    14. 林樹柱,「預力混凝土設計及施工」,大中國圖書公司,台北市(1993)。
    15. 洪崇嚴,「台灣地區氣候對自充填混凝土乾縮之影響」,碩士論文,國立台灣大學土木工程研究所,台北(2000)。
    16. 郭俊長,「單索面斜張橋橋塔承力變形行為分析」,碩士論文,國立成功大學土木工程研究所,台南(2002)。
    17. 黃嘉昌,「自充填混凝土結構行為監測與研究」,碩士論文,國立交通大學土木工程研究所,新竹(2001)。
    18. 蔡同宏,「高性能混凝土之基本力學特性研究」,碩士論文,國立成功大學土木工程研究所,台南(1997)。

    下載圖示 校內:2018-09-04公開
    校外:2018-09-04公開
    QR CODE