| 研究生: |
蔡德昌 Tsai, De-Chang |
|---|---|
| 論文名稱: |
球墨及矽晶第二相顆粒對球墨鑄鐵及鋁-矽合金放電加工特性之效應探討 A Study on the Effects of Spheroidal Graphite and Silicon Second Phase Particles on EDM Characteristics of SG Cast Irons and Al-Si Alloys |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 峰點密度 、材料去除率 、放電加工 、第二相顆粒 |
| 外文關鍵詞: | Materials removal rate, EDM, Second phase particles, Ridge density |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在探討第二相對共晶模具材料放電加工特性之效應,實驗材料選擇最具代表性之共晶型兩相材料,一為肥粒體基球墨鑄鐵(2.1wt.%C~4.1wt.%C, 2.0wt.%Si~4.9wt.%Si),另一種為鋁-矽合金(Al-1wt.%Si~29 wt.%Si)。研究方針主要針對放電加工材料去除率之放電加工電學條件以及共晶試料之第二相效應加以釐清,有系統改變之實驗數據包括各試料之化學組成、凝固速率與放電加工條件。
上述兩種共晶型合金試料之物性縱使明顯廻異,但是實驗結果共通性顯示,肥粒體基球墨鑄鐵與鋁-矽合金在銅電極為正極性時有較大的材料去除率,且其材料去除率隨著加工電流增加而增加,而隨著加工面積及加工時間增加而降低。當放電脈衝時間與衝擊係數增加時,兩者試料的放電加工材料去除率皆有隨之先增後降之趨勢。實驗試料的第二相面積率、粒徑以及型態變化對放電加工速率亦具有依存性。
當肥粒體基球墨鑄鐵之球墨平均粒徑細化與顆粒數增加時,材料去除速率顯示增加傾向,而當球墨面積率增加時,材料去除速率也有先增後降之趨勢。根據加工表面之次表面觀察結果,肥粒體基球墨鑄鐵在放電脈衝時間時,由於熔湯與未完全融化之球墨顆粒之間的濕潤性不佳,導致放電加工表面之球墨周圍形成凹點,而遠離球墨處則形成峰點,而且此放電加工表面之峰點密度會隨著球墨粒徑細化與顆粒數增加而增加。
另一方面以鋁-矽合金而言,矽顆粒粒徑及面積率的增加對鋁-矽合金放電加工之材料去除率亦為增加傾向。鋁-矽合金由放電加工面之次表面觀察可知,峰點位置大多會在矽晶顆粒上方形成,且峰點密度隨著初晶矽尺寸及矽顆粒面積率增加而增加。因放電火花會發生在電極及試料表面的峰點上,故峰點密度愈大則放電密度也較大,進而導致材料去除率有增大之傾向。
經由本研究對具第二相之肥粒體基球墨鑄鐵與鋁-矽合金之放電加工特性探討,確認基材中不論軟質的球墨或硬質的矽顆粒對放電加工材料去除率皆具有主導性之要因,並且釐清了第二相對放電加工過程中材料之去除行為機制。
The Electro Discharge Machining (EDM) features of the eutectic molding material with second phase were investigated in this study. Ferritic spheroidal graphite (SG) cast irons (2.1wt.%C~4.1wt.%C, 2.0wt.%Si~4.9wt.%Si) and Al-Si alloys (Al-1Si~29Si) were selected as testing materials. Effects of compositions, solidification rate, and EDM parameters were examined.
Experimental results indicated that the materials removal rate of the ferritic SG cast irons by EDM increased with a smaller graphite size and higher graphite nodule count. As for Al-Si alloys, the second phase, including primary and eutectic silicon particles, had remarkable effects on EDM characteristics. That is, higher primary silicon particles size and higher area fraction of silicon particles would accelerate the removal rate. The EDMed surfaces featured continuous ridges formed by overlapping discharge craters, and the ridge density also tended to increase with a finer graphite nodule size. Owing to the poor wettability between the cast iron melts and semi-molten graphite during solidification process, graphite particles were embedded in the cavities in-between the ridges. The Al-Si alloys EDMed surface feature was similar to that of SG cast irons, showing a wavy ridge pattern. The amount of silicon phase also affected the surface roughness. Notably, silicon particles were located in the ridge regions, not the troughs.
Finally, through this study that concerns the EDM characteristics of SG cast irons and Al-Si alloys, the effects of the heterogeneous second phase can be clearly clarified. This could serve as the practical reference for electro-discharge machining of mold materials with heterogeneous second phase and other engineering materials.
1. C. Dorsch, “EDMing Die Steels”, Cutting Tool Engineering, Vol. 4, pp.22~28, 1994.
2. J. C. Rebelo, A. Morao Dias, D. Kremer and J. L. Lebrun, “Influence of EDM Pulse Energy on the Surface Integrity of Martensitic Steels”, J. Materials Processing Technology, Vol. 84, pp. 90-96, 1998.
3. J. S. Soni, “Experimental Investigation on Migration of Material during EDM of Die Steel (T215 Cr12)”, Wear, No. 177, pp. 71-79, 1994.
4. R. Snoeys, F. Stalens and W. Dekeyser, “Current Trends in Non-Conventional Material Removal Processes”, Annals of the CIRP, Vol. 35/2, pp. 467-492, 1986.
5. D.C.Tsai, T. S. Lui and L.H Chen; “Effect of Graphite Nodules on the EDM Machinability of Ferritic SG Cast Irons”, Materials Transactions, JIM, Vol. 41, no.2, 2000, pp. 293-299.
6. De-Chang Tsai, Truan-Sheng Lui and Li-Hui Chen; “Effect of Silicon Particles on the EDM Characteristics of Al-Si Alloys”, Materials Transactions, JIM, Vol. 43, no. 2, 2002, pp.1-7.
7. D. D. Dibitonto, P. T. Eubank and M. A. Barrufet, “Theoretical Models of the Electrical Discharges Machining Process, PartⅠ: A Simple Anode Erosion Model”, Apply Physical, Vol. 66, No.9, pp. 4095-4103, 1989.
8. M. Kunieda, “Study on Distribution of Spark Locations in EDM”, J. Japan Society for Precision Engineering, Vol.57, No.6, pp. 9-12, 1991.
9. M. Motoki and K. Hashiguchi, “Energy Distribution at the Gap in Electric Discharge Machining”, Annals of the CIRP, Vol. 14, pp. 485-489, 1967.
10. J. Monaghan, D. Brazil and C. Sheridan, “The Production of Cavities in Nickel Based Superalloys and Metal Matrix Composites Using Electro-discharge Machining”, Key Engineering Materials, 118-119, pp. 85-92, 1996.
11. Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti and N. Mohri, “Fabrication of Surface Modification Layer on Stainless Steel by Electrical Discharge Machining”, Materials and Manufacturing Process, Vol. 10, No. 2, pp. 195-203, 1995.
12. T. Miyazaki, S. Yoshioko, T. Kimura, A. Komatsu, and N. Kinoshita, “Surface Modification of Steel by a Small-Diameter Plasma Arc”, Annals of the CIRP, Vol. 44/1, pp. 161-164, 1995.
13. Y. Tsunekawa, M. Okumiya and N. Mohri, “Surface Modification of Aluminum by Electrical Discharge Alloying”, Materials Science and Engineering, A174, pp. 193-198, 1994.
14. N. Mohri, N. Saito and Y. Tsunekawa, “Metal Surface Modification by Electrical Discharge Machining with Composite Electrode”, Annals of the CIRP, Vol. 42/1, pp. 219-222, 1993.
15. K. Masui, T. Sone and K. Demizu, “The Microhardness on Wire-EDM’d Surface”, J. Japan Society for Precision Engineering, Vol.57, No.6, pp. 138-143, 1991.
16. 黃錦鐘,放電加工,高立圖書有限公司,台北,第一冊,1-15頁, 1998。
17. J. H. Zhang, T. C. Lee and W. S. Lau, “Study on the Electro-Discharge Machining of a Hot Pressed Aluminum Oxide Based Ceramic”, J. Materials Processing Technology, Vol. 63, pp. 908-912, 1997.
18. 張渭川,放電加工的結構與實用技術,全華圖書有限公司,台北,50-52頁,1990。
19. W. J. Tomlinson and J. R. Adkin, “Microstructure and Properties of Electrodischarge Machined Surface”, Surface Engineering, Vol. 8, No. 4, pp. 283-288, 1992.
20. P. F. Thomson “Surface Damage in Electrodischarge Machining”, Materials Science and Technology, Vol. 5, pp. 1153-1157, 1989.
21. J. C. Rebelo, A. Morao Dias, D. Kremer and J. L. Lebrun, “Influence of EDM Pulse Energy on the Surface Integrity of Martensitic Steels”, J. Materials Processing Technology, Vol. 84, pp. 90-96, 1998.
22. Y. Fukuzawa, Y. Kojima, T. Tani, E. Sekiguti and N. Mohri, “Fabrication of Surface Modification Layer on Stainless Steel by Electrical Discharge Machining”, Materials and Manufacturing Process, Vol. 10, No. 2, pp. 195-203, 1995.
23. Lin Yan Chernga, Yan Biing Hwaa, and Chang Yong Songa, “Machining characteristics of titanium alloy (Ti–6Al–4V) using a combination process of EDM with USM”, J. Materials Processing Technology, Vol.104, pp171-177, 2000.
24. S. L. Chen, F. Y. Huang, Y. Suzuki and B. H. Yan, “Improvement of Materials Removal Rate of Ti–6Al–4V Alloy by Electrical Discharge Machining with Multiple Ultrasonic Vibration”, J. Inst. Light Metals, Vol.47, pp220-225, 1997.
25. B. H. Yan and S. L. Chen, “Characteristics of SKD11 by Complex Process of Electrical Discharge Machining Using Liquid Suspended with Aluminum Powder”, J. Japan Institute of Metals, Vol. 58, No. 9, pp 1067-1072, 1994.
26. J. H. Zhang, T. C. Lee and W. S. Lau, “Study on the Electro-Discharge Machining of a Hot Pressed Aluminum Oxide Based Ceramic”, J. Materials Processing Technology, Vol. 63, pp. 908-912, 1997.
27. J. P. Kruth, L. Stevens, L. Froyen, B. Lauwers and K. U. Leuven, “Study of the White Layer of a Surface Machined by Die-Sinking Electro-Discharge Machining”, Annals of the CIRP, Vol. 44/1, pp. 169-172, 1995.
28. L. C. Lee, L. C. Lim, Y. S. Wong and H. H. Lu, “Toward a Better Understanding of the Surface Feature of Electro-Discharge Machined Tool Steels”, J. Materials Processing Technology, Vol. 24, pp. 513-523, 1990.
29. L. C. Lim, L. C. Lee, Y. S. Wong and H. H. Lu, “Solidification Microstructure of Electro-discharge Machined Surfaces of Tool Steels”, Materials Science and Technology, Vol. 7, No. 3, pp. 239-248, 1991.
30. L. C. Lee, L. C. Lim, V. Narayanan and V. C. Venkatesh, “Quantification of Surface Damage of Tool Steels After EDM”, Int. J. Mach. Tools Manufacture, Vol. 28, No. 4, pp. 359-372, 1988.
31. C. C. Wang, B. H. Yan, H. M. Chow and Y. Suzuki: “Cutting Austempered Ductile Iron Using EDM Sinker”, J. Materials Processing Technology, Vol. 88, pp83-89, 1999.
32. C. P. Tabrett, “The Electro-Discharge Machining Surfaces of High-Chromium White Irons”, J. Materials Science Letters, Vol. 15, pp. 1792-1794, 1996.
33. W. J. Tomlinson and J. R. Adkin, “Microstructure and Properties of Electrodischarge Machined Surface”, Surface Engineering, Vol. 8, No. 4, pp. 283-288, 1992.
34. Y. Suzuki, B. H. Yan and H. O. Hsu, “Effects of Cooling Dielectric on Electrical Discharge Machining Characteristics of 7075 Aluminum Alloy”, J. Japan Institute of Light Metal, Vol. 45, No. 10, pp 543-548, 2000.
35. Poon, S. K and Lee. T. C, “Electrical Discharge Machining of Particulate Metal-Matrix Composites,” ASM, pp. 43-50, 1993.
36. N. P. Hung, L. J. Yang and K. W. Leong, “Electrical Discharge Machining of Cast Metal Matrix Composites,” J. Materials Processing Technology, Vol. 44, 229-236, 1999.
37. M. Ramulu and M. Taya, “EDM Machinability of SiCw/Al Composites”, J. Materials Science, Vol. 24, pp. 1103-1108, 1989.
38. B. H. Yan and C. C. Wang, “Machining Characteristics of Al2O3/6061Al composite Using Rotary Electro-Discharge Machining with Tube Electrode”, J. Materials Processing Technology, Vol.195, pp. 222-231, 1999.
39. A. H. Rauch, Source Book on Ductile Iron: Section I: A New Engineering Material, New Land Book Company, Taipei, pp. 1948-1950, 1977.
40. S. I. Karsay, “Ductile Iron: Product Practices”, AFS Inc., USA, pp. 2-5, 1985.
41. J. R. Davis, ASM Specialty Handbook-Cast Irons, ASM, Metals Park, OH, pp. 16-31, 1996.
42. L. Eiselstein, O. Ruand and O. Sherby: J. Materials Science, Vol. 18 pp. 483-492, 1983.
43. J. W. Mattews and D. L. Allinson: Phil. Mag. Vol. 8, pp.1283-1303, 1963.
44. T. T. Wong and G. Y. Liang, “Formation and Crystallization of Amorphous Structure in the Laser-Cladding Plasma-Sprayed Coating of Al-Si Alloy”, Materials Characterization, Vol. 38, pp. 85-89, 1997.
45. 關勝立,異徑雙輪式連續鑄造Al-Si合金薄片微觀組織控制與拉伸性質之間關係探討,成功大學,博士論文,第四~五章,2000。
46. H. T. Angus, “Cast Iron: Physical and Engineering Properties”, British Cast Iron Research Association, London, Chapt.1, 1976.
47. “Metals Handbook”, Vol.16, American Society for Metals, Metals Park, Ohio, pp. 557, 1989.
48. S. Nakamura, N.Sakamoto, K. Inoue, K. Ogi and K. Matsuda, “As-Cast Heavy Section Ferritic Spheroidal Graphite Cast Irons,” AFS Transactions, Vol.97, pp. 539-543, 1989.
49. R. Weber, J. C. Sturm and P. R. Sahm, “The Status in Cast Iron Microstructure Engineering and Interactions with Computer Aided Modeling,” Physical Metallurgy of Cast Irons V, Proceedings of the 5th International Symposium on the Physical Metallurgy of Cast Iron, France, pp. 105-128, 1994.
50. J. L. Gal, “Trends and Metallurgical Factors Involved in Automotive Cast Iron Parts,” Physical Metallurgy of Cast Irons V, Proceedings of the 5th International Symposium on the Physical Metallurgy of Cast Iron, France, pp.129-136, 1994.
51. J. L. Jorstad, “The Hypereurectic Aluminum-Silicon Alloy Used to Cast the Vega Engine Block”, AFS Transactions, Vol. 79, pp. 85-90, 1971.
52. A. D. Sakada and J. Clarke, “Wear Characteristics and Surface Topography Observed in the Dry Sliding of Aluminum-Silicon Alloy”, Proceedings International Conference on Wear of Materials, pp. 31-39, 1981.
53. J. R. Davis, Metals Handbook, 10th edition, ASM, Metals Park, OH, Vol. 1, pp. 33-35, 1990.
54. J. E. Hatch, “Aluminum Properties and Physical Metallurgy”, ASM, Metals Park, Ohio, pp.200-247, 1984.
55. T. Takase, “Die Casting of Hyper-Eutectic Al-Si Al-Si Alloy”, Imono, Vol. 8, pp.35-42, 1995.
56. M. Nakamura and E. Kato, “The Properties of Al-Si Alloys”, J. Japan Inst. Light Metal, Vol. 38, No. 7, pp. 426-446, 1988.
57. E. L. Rooy, “Summary of Technical Information on Hypereutectic Al-Si Alloys”, AFS Trans., Vol. 80, pp. 421-426, 1972.
58. D. L. Zalensas, Aluminum Casting Technology, AFS, Inc., Des Plaines, Illinois, U.S.A., 1st ed., 1993.
59. J. E. Gruzleski and B. M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloy”, AFS, Inc., Des Plaines, Illinois, U.S.A., 1st ed., 1990.
60. C. B. Kim and R. W. Heine, “Fundamentals of Modification in the Aluminum-Silicon System”, J. Institute Metals, Vol. 92, pp. 367-376, 1963.
61. M. R. Patel, M. A. Barrufet, P. T. Eubank and D. D. Dibitonto, “Theoretical Models of the Electrical Discharges Machining, PartⅡ: A Simple Anode Erosion Model”, Apply Physical, Vol. 66, No.9, pp. 4104-4111, 1989.
62. C. Wu, V. Sahajwalla and R. D. Pehlke, “Wettability of Graphite Mold Coating by Iron and Steel: Mold-Metal Interfacial Phenomena”, AFS Transactions, Vol. 105, pp. 739-744, 1997.
63. R. C. Ruhl and M. Cohen: “A New Metastable h.c.p Phase in the Iron-Carbon System”, Acta Metall., No. 15, pp. 159-160, 1967.