| 研究生: |
蕭宇哲 Hsiao, Yu-Che |
|---|---|
| 論文名稱: |
反置型有機太陽能電池元件之製作與介面修飾之研究 The fabrication and interfacial modifications of inverted type polymer photovoltaic cells |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 奈米柱 、反置型有機太陽能電池 |
| 外文關鍵詞: | Inverted, organic |
| 相關次數: | 點閱:109 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本論文的研究中第一部分,因為離子束濺鍍法具有成膜平整,且膜的純度高,因此我們使用了離子束濺鍍法(Ion Beam Sputter,IBS)搭配退火處理來製作氧化鋅晶種層,再使用有別於傳統的水熱法(hydrothermal method),改用電化學水熱法的方式來製作氧化鋅奈米柱,成功製作出具高度方向性以及電性良好的氧化鋅奈米柱,最後以此種氧化鋅奈米柱製作有機/無機混合奈米結構太陽能電池,並透過改變奈米柱長度、主動層厚度以及退火處理的時間,製作出高效率的元件;在第二部分,我們試圖改變氧化鋅薄膜之表面能,期望能改變主動層中poly(3-hexylthiophene) (P3HT)與[6,6]-phenyl C61 butyric acid methyl ester (PCBM)的垂直相分離。因此在這裏我們使用氫氧化鈉來修飾氧化鋅薄膜,修飾過後我們發現元件的短路電流密度有顯著提升,但是填充因子與開路電壓下降,接著我們使用退火處理,使得填充因子與開路電壓上升,成功的使元件效率提升。
未來我們期望能將氫氧化鈉修飾法,應用於有機/無機混合奈米結構太陽能電池,期望能在增加主動層與電子收集層接觸面積之於,還可以減少載子再結合率,進一步提升效率。
In this study, we have two parts. In the first part, we applied Ion Beam Sputtering (IBS) for making the ZnO thin films, and then, we let this film be annealed for a seed layer. Then we use the hydrothermal-electrico chemical deposition method to grow the ZnO nanorod on the seed layer. These nanorods have good orientation and electrical properties. Finally, we use these ZnO nanorod film to make the hybrid photovoltaic cells and by optimize process, we got a high efficiency device.
In the second part, we want to modify the vertical phase separation of active layer via changing the surface energy of thin film ZnO. We use sodium hydroxide (NaOH) for changing the surface energy. We found that as the short circuit current density increase, and the open circuit voltage and fill factor decrease. After that, we annealed the device, that was modified by sodium hydroxide. We found that the open circuit voltage and fill factor increased and that make the efficiency increase.
In the future, we hope that we can use sodium hydroxide to modify the hybrid photovoltaic device for not only increasing the contact area of active layer and nanorod, but also reducing the charge recombination rate of the device.
1. K. W. J. Barnham, M. Mazzer, and B. Clive, Nat. Mater.
5, 161 (2006).
2. M. A. Green, Progress In Photolvoltaics: Research And
Application 9, 123 (2001).
3. B. O’Regan and M. Grätzel, Nature 353, 737 (1991).
4. V. Y. Merritt and H. J. Hovel, Appl. Phys. Lett. 29,
414 (1976).
5. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
6. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126
(2001).
7. J. Tsukamoto, H. Ohigashi, K. Matsumura, and A.
Takahashi, Jpn. J. Appl. Phys. 20, 127 (1981).
8. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F.
Wudl, Science 258, 1474 (1992).
9. G. Yu, K. Pakbaz and A. J. Heeger, Appl. Phys. Lett.
64, 3422 (1994).
10. G. Yu, J. Gao, J. Hummelen, and F. Wudl, A. J. Heeger,
Science 270, 1789 (1995).
11. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F.
Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys.
Lett. 78, 841 (2001).
12. P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl.
Phys. Lett. 81, 3885 (2002).
13. F. Padinger, R. S. Rittberger, and N. S. Sariciftci,
Adv. Funct. Mater. 13, 85 (2003).
14. D. Chirvase, J. Parisi, J. C. Hummelen, and V.
Dyakonov, Nanotechnology 15, 1317 (2004).
15. J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 87,
112105 (2005).
16. G. Li, V. Shortriya, Y. Yao, and Y. Yang, J. Appl.
Phys. 98, 043704 (2005).
17. V. Shortriya, J. Quyang, R. J. Tseng, G. Li, and Y.
Yang, Chem. Phys. Lett. 411, 138 (2005).
18. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery,
and Y. Yang, Nat. Mater. 4, 864 (2005).
19. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger,
Adv. Funct. Mater. 15, 1617 (2005).
20. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C.
Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater.
18, 789 (2006).
21. L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom,
Appl. Phys. Lett. 88, 093511 (2006).
22. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang,
Appl. Phys. Lett. 88, 253503 (2006).
23. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis,
and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
24. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K.
Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys.
Lett. 89, 233517 (2006).
25. H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, and Y. Yang,
Appl. Phys. Lett. 92, 173303 (2008).
26. http://www.astm.org/
27. http://www.nrel.gov/
28. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79,
126 (2001).
29. H. Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924
(2004).
30. B. P. Foster, G. S. Stanford, and L. L. Lee. JR, Phys.
Rev. Lett. 93, 5 (1954).
31. Y. Sadaoka, Y. Sakai, and H. Akiyma, J. Cell Sci. 21,
1 (1986).
32. P. Sigmund, Phys. Rev. 184, 383 (1969).
33. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S.
Cook, and J. R. Durrant, Appl. Phys. Lett. 86, 063502
(2005).
34. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y.
Yang, Adv. Funct. Mater. 17, 1636 (2007).
35. F. Padinger, R. S. Rittberger, and N. S. Sariciftci,
Adv. Funct. Mater. 13, 85 (2003).
36. G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery,
and Y. Yang, Nat. Mater. 4, 864 (2005).
37. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery,
and Y. Yang, Adv. Funct. Mater. 16, 2016 (2006).
38. M. P. de Jong, L. J. Van Ijzendoom, and M. J. A. de
Voigt, Appl. Phys. Lett.77, 2255 (2000).
39. H. Peisert, M. Knupfer, F. Zhang, A. Petr, L. Dunsch,
and J. Fink, Appl. Phys. Lett. 83, 3930 (2003).
40. H. Peisert, A. Petr, L. Dunsch, T. Chassé, and M.
Knupfer, Chem. Phys. Chem. 8, 386 (2007).
41. H. J. Bolink, E. Coronado, D. Repetto, and M. Sessolo,
Appl. Phys. Lett. 91, 223501 (2007).
42. H. You, Y. Dai, Z. Zhang, and D. Ma. J. Appl. Phys.
101, 026105 (2007).
43. M. S. A. Abdou, F. P. Orifino, Y. Son, and S.
Holdcroft, J. Am. Chem. Soc. 119, 4518 (1997).
44. C.-Y. Kwong , A.-B. Djuri, P.-C. Chui, K.-W. Cheng ,
and W.-K. Chan, Chem. Phys. Lett. 384, 372 (2004).
45. W. J. E. Beek, M. M. Wienk, and René A. J. Janssen, J.
Mater. Chem. 15, 2985 (2005).
46. W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos,
Science 295, 2425 (2002).
47. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc. 113,
2826 (1991).
48. C. Pacholski, A. Kornowski, and H. Weller, Angew.
Chem. Int. Ed. 41, 7 (2002).
49. B. Liu and H.-C. Zeng, Langmuir 20, 4196 (2002).
50. J. Xu, Y. Chen , Y. Li, and J. Shen, J. Mater. Sci.
40, 2919 (2005).
51. L. Vayssieres, K. Keis, S. Lindquist, and A. Hagfeldt,
J. Phys. Chem B 105, 3350 (2001).
52. L. Vayssieres, K. Keis, A. Hagfeldt, and S. Lindquist,
Chem. Mater. 13, 4395 (2001).
53. L. Vayssieres, Adv. Mater. 15, 464 (2003).
54. L. Greene, M. Law, J. Goldberger, F. Kim, J. Johnson,
Y. Zhang, R. Saykally, and P. Y. Ngew, Chem. Int. Ed.
42, 3031 (2005).
55. M. Ohyama, H. Kouzuka, and T. Yoko, Thin Solid Films
306, 78 (1997).
56. M. Law, L. Greene, J.C. Johnson, R. Saykally, and P.
Yang, Nat. Mater. 4, 455 (2005).
57. B. de Boer, A. Hadipour, M. M. Mandoc, T. Van
Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621
(2005).
58. S.-K. Hau, H.-L. Yip, O. Acton, N.-S. Baek, H. Ma, and
Alex K.-Y. Jen, J. Mater. Chem. 18, 5113 (2008).
59. M, Campoy-Quiles, T. Ferebczi, T. Agostinelli, P. G.
Etchegoin, Y.Kim, T. D. Anthopoulos, P. N. Stavrinou,
D. D. C. Brafley, and J. Nelson, Nat. Mater. 20, 158
(2008).
60. K. Takanezawa, K. Hirota, Q.-S. Wei, K. Tajima, and K.
Hashimoto, J.Phys.Chem. C 111, 7218 (2007).
61. B. O. Aduda, P. Ravirajan, K. L. Choy, and J. Nelson,
J. Electrochem. Soc. 3, 141 (2004).
62. S. M. Sze, Physics of Semiconductor Device, appendix
F, (Wiley, New Jersey 2007).
63. C. Casteleiro, H. L. Gomes, P. Stallinga, L. Bentes,
R. Ayouchi, and R. Schwarz, J. Non-Cryst. Solids 354,
2519 (2008).
64. Y. Zhao, Z. Xie, Y. Qu, Y. Geng, and L. Wang, Appl.
Phys. Lett. 90, 043504 (2007).