簡易檢索 / 詳目顯示

研究生: 賴季夆
Lai, Chi-Feng
論文名稱: 基於行動邊緣計算架構下使用延遲限制計算之 V2V2I 車載網路資料分流機制
The Mobile Edge Computing (MEC) -based Vehicle to Vehicle to Infrastructure (V2V2I) VANET Data Offloading using the Delay-constrained Computing Method
指導教授: 黃崇明
Huang, Chung-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 97
中文關鍵詞: 行動邊緣計算車載資料分流延遲限制計算車對車車對車對基礎網路
外文關鍵詞: Mobile Edge Computing, VANET Data Offloading, Delay-constrained Computing, Vehicle to Vehicle and Vehicle to Vehicle to Infrastructure
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出使用行動邊緣計算的架構計算出在限制的延遲時間內距離 RSU n-hop 的車對車對基礎網路的資料分流機制。在有一輛車 Vx 想透過網路下載資料的情境下,如果 Vx 不在 RSU 的訊號範圍之中,那 Vx 只能透過 4G/5G 的行動網路下載資料,若能透過一輛在 RSU 訊號範圍內的車 Vy 來下載資料,而後使用 Vx 與 Vy 之間的 n-hop 車對車資料分流機制把 Vx 想要的資料從行動網路下載分流至透過一條車對車對基礎網路的分流路徑下載。在本篇論文中利用了行動邊緣計算的架構來達成集中式的運算,每一輛車會將自身的資訊回報給行動邊緣計算的伺服器,包含位置、速度、行駛方向、車輛 ID、鄰近車輛的 ID、能夠連接上的 RSU 的 ID 等等,車輛不管是還沒進入到 RSU 的訊號範圍還是離開了 RSU 的訊號範圍,行動邊緣計算伺服器都會根據車輛的回報資訊去找出一條能進行資料分流的車對車對基礎網路的資料分流路徑。由於行動邊緣計算伺服器是收到車輛的回報訊息才開始資料分流機制的計算,使得就算有資料分流路徑但是要等到車輛的回報訊息才能使用,因此行動邊緣計算伺服器會預測車輛的在回報周期內的行駛狀況,找出這段時間內最好的資料分流路徑,車輛在延遲一段時間之後就能使用這條分流路徑而不是等到車輛的下一個回報的時間點。在本篇論文中,評斷資料分流路徑的方法分為兩種,第一種是以分流時間為基準的評斷方式,第二種是不僅考慮分流的時間並考慮了資料分流路徑的網路競爭情況的評斷方式。在效能評估中,在不同的車輛密度下,所提出的兩種方法均優於傳統的只使用 RSU 來進行資料分流的方式,在所提出的兩種方法之中,第二種方法優於第一種方法。

    This thesis proposes a Mobile Edge Computing (MEC)-based Delay-constrained n-hop data offloading method. In the proposed method, when a vehicle X is not in the IEEE 802.11p Road Side Unit (RSU)’s signal coverage, if there is a multiple-hop vehicle-to-vehicle (V2V) path connecting vehicle Y, which is inside the RSU’s signal coverage, then vehicle X can launch the vehicle-to-vehicle-to-infrastructure (V2V2I), in which I denotes RSU, VANET data offload from the 4G/5G cellular network to the RSU through the multiple-hop V2V path. In this work, the MEC is used to have the centralized mechanism for checking whether the aforementioned n-hop V2V2I path for helping vehicles’ data offloading exists or not. Using the proposed method, each vehicle reports its context, including position, speed, driving direction, vehicle ID, and neighboring vehicles’ ID, the ID of the RSU that can be connected, etc., to the MEC server. The MEC server calculates whether the n-hop V2V2I path exists or not for vehicle X based on the reported contexts from all vehicles when the MEC server receives X’s reported context. In addition to derive the V2V2I paths based on the snapshotted VANET topology on the time point of receiving X’s reported context, this work proposed a scheme to have the MEC server to derive the potential V2V2I paths that may exist in the future, i.e., in a constrained time interval. In this way, it can find the better n-hop V2V2I VANET data offloading path. This work proposes two methods for finding the data offloading path. The first method is based on the data offloading path’s lifetime. The second method not only considers the data offloading path’s lifetime but also data offloading path’s quality, which is based on the contention level of the path. The performance analysis shown that the proposed two methods are better than the traditional method, which is enabled when the source vehicle is inside RSU’s signal coverage, and the second method is better than the first method in different vehicle density’s situations.

    摘要 III Abstract IV 誌謝 VI Contents VII List of Figures IX List of Tables XIII Chapter 1 Introduction 1 Chapter 2 Related Work 9 Chapter 3 The Functional Scenario of the Proposed MEC-based Delay-constrained K-hop-limited VANET Offloading Method 14 Chapter 4 The Delay-Constrained K-hop-limited Lifetime-based V2V2I Offloading Path's Construction Method 20 4-1 The initial phase 22 4-2 The shrinking phase 39 4-3 The extending phase 40 4-4 The path recovery phase 41 4-5 Handoff Processing between Two MEC Servers 43 Chapter 5 The Delay-Constrained K-hop-limited Utility-based V2V2I Offloading Path's Construction Method 47 5-1 The initial phase 47 5-2 The shrinking phase 60 5-3 The extending phase 61 5-4 The path recovery phase 62 5-5 Handoff Processing between Two MEC Servers 64 Chapter 6 Performance Analysis 65 6-1 Simulation Environment 65 6-2 Performance analysis result 67 Chapter 7 Conclusion 81 Bibliography 83 Appendix 87

    [1] Z. MacHardy, A. Khan, K. Obana, and S. Iwashina, "V2X Access Technologies: Regulation, Research, and Remaining Challenges," IEEE Communications Surveys & Tutorials, VOL. 20, NO. 3, pp. 1858-1877, 2018.
    [2] L. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, "Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges," IEEE Access, VOL. 7, pp. 6473-6492, 2019.
    [3] J. E. Siegel, D. C. Erb, and S. E. Sarma, "A Survey of the Connected Vehicle Landscape—Architectures, Enabling Technologies, Applications, and Development Areas," IEEE Transactions on Intelligent Transportation Systems, VOL. 19, NO. 8, pp. 2391-2406, 2018.
    [4] A. Nshimiyimana, D. Agrawal, and W. Arif, "Comprehensive survey of V2V communication for 4G mobile and wireless technology," Proceedings of the 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1722-1726, 2016.
    [5] K. Abboud, H. A. Omar, and W. Zhuang, "Interworking of DSRC and Cellular Network Technologies for V2X Communications: A Survey," IEEE Transactions on Vehicular Technology, VOL. 65, NO. 12, pp. 9457-9470, 2016.
    [6] S. Chen, J. Hu, Y. Shi, and L. Zhao, "LTE-V: A TD-LTE-Based V2X Solution for Future Vehicular Network," IEEE Internet of Things Journal, VOL. 3, NO. 6, pp. 997-1005, 2016.
    [7] H. Seo, K. Lee, S. Yasukawa, Y. Peng, and P. Sartori, "LTE evolution for vehicle-to-everything services," IEEE Communications Magazine, VOL. 54, NO. 6, pp. 22-28, 2016.
    [8] S. Chen et al., "Vehicle-to-Everything (v2x) Services Supported by LTE-Based Systems and 5G," IEEE Communications Standards Magazine, VOL. 1, NO. 2, pp. 70-76, 2017.
    [9] Zhou, H., Wang, H., Chen, X., Li, X. and Xu, S, "Data offloading techniques through vehicular ad hoc networks: A survey.," IEEE Access, VOL. 6, pp. 65250-65259, 2018.
    [10] F. Rebecchi, M. D. d. Amorim, V. Conan, A. Passarella, R. Bruno, and M. Conti, "Data Offloading Techniques in Cellular Networks: A Survey," IEEE Communications Surveys & Tutorials, VOL. 17, NO. 2, pp. 580-603, 2015.
    [11] K. Poularakis, G. Iosifidis, I. Pefkianakis, L. Tassiulas, and M. May, "Mobile data offloading through caching in residential 802.11 wireless networks," IEEE Transactions on Network and Service Management, VOL. 13, NO. 1, pp. 71-84, 2016.
    [12] S. Sou and Y. Peng, "Performance Modeling for Multipath Mobile Data Offloading in Cellular/Wi-Fi Networks," IEEE Transactions on Communications, VOL. 65, NO. 9, pp. 3863-3875, 2017.
    [13] W. Xu et al., "ViFi: Vehicle-to-Vehicle Assisted Traffic Offloading via Roadside WiFi Networks," Proceedings of the 61th IEEE Global Communications Conference (GLOBECOM), pp. 1-6, 2018.
    [14] J. Feng and Z. Feng, "A vehicle-assisted offloading scheme for hotspot base stations on metropolitan streets," Proceedings of the 28th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1-6, 2017.
    [15] Y. Sun, L. Xu, Y. Tang, and W. Zhuang, "Traffic Offloading for Online Video Service in Vehicular Networks: A Cooperative Approach," IEEE Transactions on Vehicular Technology, VOL. 67, NO. 8, pp. 7630-7642, 2018.
    [16] T.-Y. Yu, X. Zhu, H. Chen, and M. Maheswaran, "HetCast: Cooperative data delivery on cellular and road side network," Proceedings of the 28th IEEE Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1-6, 2017.
    [17] Z. Su, Q. Xu, Y. Hui, M. Wen, and S. Guo, "A game theoretic approach to parked vehicle assisted content delivery in vehicular ad hoc networks," IEEE Transactions on Vehicular Technology, VOL. 66, NO. 7, pp. 6461-6474, 2016.
    [18] X. Zhu, Y. Li, D. Jin, and J. Lu, "Contact-aware optimal resource allocation for mobile data offloading in opportunistic vehicular networks," IEEE Transactions on Vehicular Technology, VOL. 66, NO. 8, pp. 7384-7399, 2017.
    [19] H. Liu, F. Eldarrat, H. Alqahtani, A. Reznik, X. d. Foy, and Y. Zhang, "Mobile Edge Cloud System: Architectures, Challenges, and Approaches," IEEE Systems Journal, VOL. 12, NO. 3, pp. 2495-2508, 2018.
    [20] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A Survey on Mobile Edge Computing: The Communication Perspective," IEEE Communications Surveys & Tutorials, VOL. 19, NO. 4, pp. 2322-2358, 2017.
    [21] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb, "Survey on Multi-Access Edge Computing for Internet of Things Realization," IEEE Communications Surveys & Tutorials, VOL. 20, NO. 4, pp. 2961-2991, 2018.
    [22] C. Huang, Z. Wu, and S. Lin, "The Mobile Edge Computing (MEC)-Based VANET Data Offloading Using the Staying-Time-Oriented k-Hop Away Offloading Agent," Proceedings of the 34th International Conference on Information Networking (ICOIN), pp. 357-362, 2019.
    [23] W. Zhang, Z. Zhang, and H. Chao, "Cooperative Fog Computing for Dealing with Big Data in the Internet of Vehicles: Architecture and Hierarchical Resource Management," IEEE Communications Magazine, VOL. 55, NO. 12, pp. 60-67, 2017.
    [24] G. S. Aujla, R. Chaudhary, N. Kumar, J. J. Rodrigues, and A. Vinel, "Data offloading in 5g-enabled software-defined vehicular networks: A stackelberg-game-based approach," IEEE Communications Magazine, VOL. 55, NO. 8, pp. 100-108, 2017.

    下載圖示 校內:2024-01-01公開
    校外:2024-01-01公開
    QR CODE