| 研究生: |
廖佩涵 Liao, Pei-Han |
|---|---|
| 論文名稱: |
合成貴金屬奈米粒子-中孔洞氧化矽複合材料之合成與SERS應用 The Synthesis and SERS Applications of Noble Metal Nanoparticles@Mesoporous Silica Composite Materials |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 中孔洞 、金奈米 、SERS |
| 外文關鍵詞: | mesoporous, gold, SERS |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以明膠為模版合成中孔洞氧化矽貫穿全文並且分為三部分,其中包覆不同奈米粒子而產生不同應用領域。第一部分為中孔洞氧化矽包覆金奈米與其在SERS上的應用。第二部份為中孔洞氧化矽包覆鹵化銀及其實驗過程中的現象探討。第三部份是以高量明膠合成出分散性高的中孔洞氧化矽球與其具備光晶行為進行探討。
第一部分:含貴重金屬奈米粒子的中孔洞氧化矽材
明膠是一種毒性低、生物相容性高、易分解且價格低廉的高分子,符合綠色化學的概念。此外,明膠富有可產生氫鍵的官能基,是奈米粒子絕佳的保護劑,所以在此部分實驗明膠扮演兩種角色,一是奈米金屬的保護劑,另一是氧化矽的有機模板。相同合成方式可應用在多種不同金屬上,本實驗包含金及鉑,所合成出的奈米粒子小且不易聚集,在氧化矽中的分散度極高。此外,包覆貴金屬奈米粒子的中孔洞氧化矽材在金黃色葡萄球菌的SERS上增顯也有顯著功效。
第二部份:鹵化銀包覆在中孔洞氧化矽材中
光催化是近年來非常熱門的研究領域,鹵化銀對光的敏感性可應用在降解或殺菌方面,是值得探討的議題。本實驗以明膠當做保護劑,以沉澱法加入不同鹽類當做沉澱劑合成鹵化銀奈米粒子,並以中孔洞氧化矽包覆。實驗中探討不同氧去除鹵化銀方式得到的實驗結果,並且發現水熱過程後會產生特殊中孔洞氧化矽構形。此外以不同矽源合成中孔洞氧化矽包覆鹵化銀得到的實驗結果也是本章節探討的重點。
第三部份:合成高分散性之中孔洞氧化矽球
本章節以較高量的明膠當作有機模板,以簡單的實驗步驟即可合成出顆粒小且分散度高的中孔洞氧化矽球,當氧化矽球經過堆積排列後,會產生光子晶體的行為,且不同粒徑尺寸的氧化矽球可呈現出不同的顏色。此外,以硝酸合成會產生有別於其他酸源合成出的氧化矽球,並且在鍛燒之後會有大孔洞產生。
Green chemistry has received considerable attention in recent years, using benign nature sources as reagents to synthesize practical materials have become more ideal. Gelatin a natural polymer is denatured collagen. Due to many amino-functional groups, gelatin can attach to surface of different materials via hydrogen bonds that makes gelatin a superior protector. Most important, gelatin is a nontoxic, highly biocompatible and low cost reagent, which demonstrates its promising applications in materials synthesis.
From our previous reports, mesoporous silicas were facilely prepared by using gelatin as organic templates and sodium silicate as silica precursor at proper pH. In this study, we also use the gelatin as a protecting agent for nanoparticles. With similar synthetic procedures, the mesoporous silica containing different metal nanoparticles and silver halides were prepared. In addition, gelatin can also be used as template to get high-yield mesoporous silica spheres in a narrow particle-size distribution under a environmental friendly synthetic condition.
In practical applications, the mesoporous silicas containing gold and platinum nanoparticles were used in the surface enhanced Raman scattering (SERS) applications. The mesoporous silicas containing silver halide nanoparticles is able to be potential photo-catalyst. The highly dispersed silica spheres displayed photonic crystal characters.
(1) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
(2) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K.D.Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
(3) C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
(4) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
(5) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
(6) Sayari, Chem. Mater., 1996, 8, 1840.
(7) M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
(8) Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
(9) IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem. 1972, 31, 578.
(10) J. Fan, C. Yu, F. Gao, J. Lei, B. Yian, L. Wang, Q. Luo, B. Tu, Zhou and D. Zhao. Angew. Chem. 2003, 115, 3254.
(11) Vinu, V. Murugesan, M. Hartmann. Chem. Mater. 2003, 15, 1385.
(12) H. P. Lin, C. Y. Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49, 981.
(13) V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
(14) H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 2002, 35, 927.
(15) J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y.-U Kwon, O. Terasaki, S.–E. Park and G. D. Stucky, J. Phys. Chem. B., 2002, 106, 2552.
(16) Bhaumik and S. Inagaki, J. Am. Chem. Soc., 2001, 123, 691.
(17) Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and Feng –Shou Xiao, Angew. Chem. Int. Ed., 2001, 7, 1258.
(18) Walcarius, M. Etienne, B. Lebeau, Chem. Mater. 2003, 15, 2161.
(19) T. Yokoi, H. Yoshitake, T. Tatsumi, J. Mater. Chem. 2004, 14 , 951.
(20) J. M. Cha, G. D. Stucky, D. E. Morse, T. J. Deming, Nature, 2000, 48, 289.
(21) E. B. Erlein, Angew. Chem. Int. Ed. 2003, 42, 614.
(22) Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed. 2003, 42, 413.
(23) Z. Zhong, Y. Yin, B. Gates, Y. Xia, Adv. Mater. 2000, 12, 206.
(24) P. Jiang, F. J. Bertone, V. L. Colvin, Science. 2001, 291, 453.
(25) http://www.nanoedu.ndhu.edu.tw/92forum/120601.pdf
(26) P. Alivisators, Science, 1996, 271, 933.
(27) Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G. D.Stukey, Chem. Mater., 2002, 12, 2448.
(28) Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
(29) Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science, 1998, 273,548.
(30) http://www.nsc.gov.tw/files/popsc/2005_140/56-61.pdf
(31) 光子晶體 從蝴蝶翅膀到奈米光子學 欒丕剛 陳啟昌 著
(32) W. Stöber, A. Frank and E. Bohn, J.Colloid, Interface, Sci., 1968, 26, 62.
(33) M. D. Sacks and T. Y. Tseng, J. Am. Ceram. Soc., 1984, 67, 526.
(34) Matijevic, Langmuir, 1994, 10, 8.
(35) R. I. Nooney, D. Thirunavukkarasu, Y. Chen, R. Josephs and A.E. Ostafin, Chem. Mater., 2002, 14, 4721.
(36) M. Grün, I. Lauer and K. K. Unger, Adv. Mater., 1997, 9, 254.
(37) Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, S. Y. Lin, J. Am. Chem. Soc.; 2003; 125(15); 4451.
(38) M. Moskovits, 「Surface- Enhanced spectroscopy「, Review of Modern Physics, 1985, 57, 785-826.
(39) http://memo.cgu.edu.tw/Secretariat/news/48/research/research_3.htm
(40) J. Turkevich, J. Hillier, P. C. Stevenson, Discuss. Faraday Soc., 1951, 11, 55.
(41) G. Frens, Nature: (London), Phys. Sci., 1973, 241, 20-22.
(42) M. Fleischmann, Che. Phys. 1974, Lett.26, 163-166.
(43) S. Glaus, and G. Calzaferri, Photochem. Photobiol. Sci , 2001 398–401.
(44) Calzaferri, Catal. Today 1997, 39, 145–157.
(45) K. Pfanner, N. Gfeller, G. Calzaferri, J. Photochem. Photobiol., A Chem,1996. 95 175.
(46) Journal of Imaging Science and Technology 45, 2001, 331–339