簡易檢索 / 詳目顯示

研究生: 林晉逸
Lin, Chin-Yih
論文名稱: 適用於高維度關鍵參數搜尋架構之交互作用搜尋演算法
Interaction-Effect Search Algorithm for the KSA Scheme
指導教授: 鄭芳田
Cheng, Fan-Tien
共同指導教授: 銀慶剛
Ing, Ching-Kang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 37
中文關鍵詞: 良率管理關鍵參數搜尋演算法高維度參數選擇交互作用決策樹
外文關鍵詞: Yield Management, Key-variable Search Algorithm, KSA, High-dimensional Variable Selection, Interaction Effect, Decision Tree
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 良率的提升對於企業的盈利能力表現至關重要,特別是在研發和大量生產階段。因此,當良率發生問題時,在此階段,應迅速確定良率損失的根本原因,以節省生產成本。為了確定根本原因,傳統良率管理系統蒐集各式與生產相關之資訊,進行大數據分析。然而,由於與生產相關的數據通常龐大且複雜,因此很難快速搜尋影響良率的根本原因。有鑑於此,Cheng等學者 [1]提出適用於良率改善之高維度關鍵參數搜 (A Scheme of High-Dimensional Key-Variable Search Algorithms)尋演算法架構來解決此問題。高維度關鍵參數搜尋演算法架構為使用者提供了一種快速且有效的方法來確定影響良率的根本原因,以生產路徑資料、製程資料、站點間量測、缺陷與最終量測做為輸入,輸出結果則為可能造成良率問題之關鍵機台或可能造成良率發生之關鍵製程參數,並有信賴指標與可能造成良率損失之盲站與以輔助。然而,當關鍵製程中關鍵機台與其他影響良率較小之次關鍵機台,倆倆交互作用影響力大於原先之關鍵機台時,如果根本原因是在上述交互作用影響之兩機台中,則高維度關鍵參數搜尋演算法架構不能進行正確的識別。
    為解決此困境,本研究參考「使用提高樣本使用效率迴歸樹 (Sample-Efficient Regression Trees)」 [7]架構進行分析,可藉由F檢定提供使用者交互作用機台之顯著程度,並提出適用於關鍵站點搜尋法的『交互作用模組』,藉以輔佐 KSA機制解決因演算法的限制造成機制中之核心演算法運算上產生之盲點。關鍵參數搜尋法為良率管理系統中之一種方法,本論文提出的機制使此方法在執行時能更完善且效益更高。

    Yield enhancement is crucial for the companies’ profitability performance, especially during the development and mass production phases. So, the root causes of yield loss should be quickly identified in these stages for saving the production cost. To identify the root causes, traditional yield enhancement approaches collect all production-related data for big data analysis. Nevertheless, since the production-related data are often large and complicated, it is difficult to quickly search for the root causes that affect the yield. In light of this, the Key-variable Search Algorithm (KSA) [1] was proposed to resolve this problem. The KSA scheme provides users a quick and efficient way to identify the root causes of yield. The inputs of this KSA scheme include production routes, process data, inline data, defects, and final inspection results; while the outputs are search results and their corresponding reliance indices as well as blind stages. However, when key tool interact with other minor critical tools and both the impact of the interaction is greater than the original key tool, if the root cause is in above two interaction tools, the High-Dimensional Key-Variable Search Algorithms Scheme cannot be correctly identified.
    To address this dilemma, this study is based on the SERT [7] architecture to analyze. Through the F-test to provide users with the significance of the interaction, in this paper proposed the "interaction effect module" to enhance the KSA Scheme to solve the limitations of the algorithm caused by the calculation of the core algorithm on the blind spot.

    摘 要 II ACKNOWLEDGMENTS XII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 6 1.3 研究流程 7 1.4 論文架構 7 第二章 文獻探討與理論基礎 8 2.1 文獻探討 8 2.1.1 傳統良率系統 8 2.1.2 資料探勘與統計技巧運用於良率改善 8 2.2 相關理論基礎 9 2.2.1 KSA機制- KSA分析模組 (KSA Analysis Module) 9 2.2.2 決策樹 (Decision Tree) 13 第三章 適用於高維度關鍵參數搜尋演算法架構之交互作用搜尋演算法 15 3.1 交互作用搜尋機制流程介紹 15 3.2 適用於關鍵參數搜尋架構之交互作用搜尋演算法探討 18 3.2.1 為何不僅將KSA Scheme Top 1結果與剩餘所有機台進行統計交互作用檢定? 18 3.2.2 樣本分割搜尋之探討 19 3.3 個別連續型變數的選擇方法 22 第四章 以Bumping、TFT-LCD Process實現與驗證交互作用搜尋演算法 25 4.1 案例實現一 Bumping Process 25 4.1.1 案例實現一 Bumping Process 實驗說明 25 4.1.2 實驗方法 26 4.1.3 資料 26 4.1.4 案例實現一 - Bumping Process 實驗一KSA 交互作用搜尋演算法分析結果 26 4.2 案例實現二 TFT-LCD Process 29 4.2.1 案例實現一 Bumping Process 實驗說明 29 4.2.2 實驗方法 30 4.2.3 資料 30 4.2.4 案例實現二 TFT-LCD Process 實驗KSA 交互作用搜尋演算法分析結果 30 第五章 結論 35 5.1 總結 35 5.2 未來研究 35 參考文獻 36

    [1] F.-T. Cheng, Y.-S. Hsieh, J.-W. Zheng, S.-M. Chen, R.-X. Xiao and C.-Y. Lin, "A scheme of high-dimensional key-variable search algorithms for yield improvement", IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 179-186, Jan. 2017.
    [2] R. Vernon, "International investment and international trade in the product cycle", The quarterly journal of economics, vol. 80, pp. 190-207, 1966.
    [3] F.-T. Cheng, C.-Y. Lin, C.-F. Chen, R.-X. Xiao, J.-W. Zheng, and Y.-S. Shieh, “Blind-stage Search Algorithm for the Key-variable Search Scheme,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp.1840-1847, Oct. 2017.
    [4] H. Cheng, M. P. L. Ooi, Y. C. Kuang, E. Sim, B. Cheah, S. Demidenko, “Automatic Yield Management System for Semiconductor Production Test”, 2011 Sixth IEEE International Symposium on Electronic Design, Test and Application (DELTA), pp. 254-258, 2011.
    [5] F. Lee, S. Smith, “Yield analysis and data management using Yield ManagerTM”, 1998 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp. 19-30, 1998.
    [6] C. F. Chien, W. C. Wang and J. C. Cheng, "Data mining for yield enhancement in semiconductor manufacturing and an empirical study." Expert Systems with Applications 33.1, pp. 192-198, 2007.
    [7] A. Chen and A. Hong, "Sample-efficient regression trees (SERT) for semiconductor yield Loss Analysis." IEEE Transactions on Semiconductor Manufacturing, vol. 23, no. 3, August 2010.
    [8] C.-K. Ing and T. L. Lai, "A stepwise regression method and consistent model selection for high-dimensional sparse linear models", Statistica Sinica, vol. 21, pp. 1473–1513, 2011.
    [9] R. Tibshirani, "Regression shrinkage and selection via the LASSO", J. Roy. Statist. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.
    [10] 張翔,提綱挈領學統計,五版。TKB出版,2014。
    [11] C. Neuhauser, " Hypothesis Testing“, Created, November 29, 2009
    [12] 田民波,林怡欣校訂,TFT LCD面板設計與構裝技術,五南圖書出版社,2010,第七章。
    [13] 蕭宏,半導體製程技術與導論,第三版,全華出版社,2014。
    [14] 陳泀潣。2016。適用於關鍵參數搜尋架構之各式資料品質評估機制。碩士論文。台南:成功大學 製造資訊與系統研究所。
    [15] 蕭任翔。2016。適用於關鍵參數搜尋架構之信心指標及盲站搜尋演算法。碩士論文。台南:成功大學 製造資訊與系統研究所。
    [16] 鄭景文。2017。適用於良率改善之高維度關鍵參數搜尋演算法架構。碩士論文。台南:成功大學 製造資訊與系統研究所。
    [17] Breiman, Leo; Friedman, J. H., Olshen, R. A., & Stone, C. J. "Classification and regression trees", Monterey, CA, Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE