| 研究生: |
葉秀峯 Ye, Xiu-Feng |
|---|---|
| 論文名稱: |
二次光學於白光LED及太陽能電池之研發與應用 Development of Secondary Optics for White Light-Emitting Diode and Solar Cell Applications |
| 指導教授: |
莊文魁
Chuang, Ricky W. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 自由曲面透鏡 、非成像光學 、二次光學設計 、白光LED |
| 外文關鍵詞: | Freeform lens, Non-imaging optics, Secondary optics design, White LED |
| 相關次數: | 點閱:146 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了改善所面臨到的能源浩劫與環境污染的問題,LED照明系統與太陽光收集器成為改善問題的核心部分,但光依靠單一的LED與太陽能電池是無法達到局部照明與太陽光大面積收集的目的,改善方式則是必須額外加上二次光學所設計的光學組件才能夠達成。然而在二次光學自由曲面透鏡的設計方法上,大多採取以複雜的數學模型來進行設計,此方式反而增加了設計上的困難與時間上的損耗。為了改善此缺點,本論文提供另一個設計自由曲面透鏡的方法,只需要簡單的數學方程式與旋轉光線搭配曲線交點上的垂直或水平切線就可以完成設計。為了驗證所提供的設計方法,分別設計了LED與太陽能電池兩個部分的自由曲面透鏡,並且利用光學模擬軟體TracePro與實驗量測結果相互比較來進行驗證。
首先在白光LED自由曲面透鏡設計部分利用TracePro模擬後,所推算出的配光曲線(polar candela distribution)為半角0°~42°的出光角度,而在實驗量測結果則得知配光曲線為半角0°~43°的出光角度,其模擬與實驗量測結果得知出光角度是一致的。
在太陽能電池自由曲面透鏡部分,主要設計目的則是專注在自由曲面透鏡必須有高均光性及局部聚光的優點,且透鏡的幾何集光倍率為100-sun。利用TracePro軟體在λ=550nm與AM1.5D的光源條件下模擬,其光學傳輸效率各自為81.5%與72.1%,而均勻度分別為94.83%與76.53%,之後再搭配自由曲面透鏡與單晶矽及III-V族三接面太陽能電池進行實驗量測,並且探討在不同的溫度與集光倍率下的量測,其量測結果顯示在III-V族三接面太陽能電池部份,其光電轉換效率為21.52%搭配自由曲面透鏡後可提升至25.53%。
In order to alleviate the energy and environmental pollution impacts being placed upon our society, efficient LED lighting systems and sunlight collector has steadfastly emerged to be the viable solutions we could rely upon. However, simply relying on a single LED and a solar cell alone may not be able to meet the expectations of lighting in a locally confined area and a large sunlight collection area, except a further improvement is adopted by incorporating the design of secondary optics. With regards to the secondary optics, a conventional wisdom is to rely on the secondary optical freeform lens design method by using a rather complex mathematical model entailed with the expenses of the added complexity and long design hours.
Therefore, in this thesis a new freeform lens design method is proposed based instead on a set of simple mathematical equations coupled with an innovative ray tracing technique by generating a two-dimensional freeform curve traced out by rotating either a reference vertical or horizontal tangential plane. In order to verify this ray tracing method, the two different freeform lenses are specifically designed and fabricated for the LED and solar cell, and a cross comparison is then established between the simulation and experimental results aided by the use of the optical TracePro simulation software.
First, the white LED freedom lens designed with TracePro theoretically demonstrates that its polar candela distribution of half-angle falls in a range of 0° to 42°, while the experimental measurement result verifies later that the polar candela distribution in terms of the half-angle is within a range between 0° and 43°. Notice that two sets of results agree quite nicely with each other. As for the solar cell, giving the combined advantages of the highly uniform irradiance, a locally light-converging capability and a geometrical concentration of 100× delivered by the freeform lens, the TracePro simulation has verified that with wavelength λ = 550nm and AM1.5D separately imposed, the resultant optical efficiencies simulated are as 81.5% and 72.1%, respectively, while the irradiance uniformity of the solar cell light absorption are obtained as 94.83% and 76.53%, respectively.
Finally, the single crystalline silicon and III-V compound semiconductor triple-junction solar cell coupled with the freeform lens are also measured by varying the temperature and the light concentration ratio. The measurement result has shown that for the III-V triple-junction solar cell, its conversion efficiency can be effectively enhanced from 21.52% to 25.53% when the freeform lens is incorporated.
第一章
[1] Florian R. Fournier, William J. Cassarly, and Jannick P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express, Vol. 18, No. 5, pp.5295-5340, Mar. 2010.
[2] Jinbo Jiang, Sandy To, W. B. Lee, and Benny Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik, Vol.121, pp. 1761-1765, Oct. 2010.
[3] L. Sun, S. Jin, and S. Cen, “Free-form microlens for illumination applications,” Appl. Opt., Vol. 48, No. 29, pp.5520-5527, Oct. 2009.
[4] H. Ries, and J. Muschaeck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A, Vol. 19, No. 3, pp.590-595, Mar. 2002.
[5] Y. Ding, X. Liu, Z. Zheng, and P. Gu, “Freeform LED lens for uniform illumination,” Opt. Express, Vol. 16, No. 17, pp.12958-12966, Aug. 2008.
[6] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Appl. Opt., Vol. 48, No. 35, pp.6627-6634, Dec. 2009.
[7] A. Domhardt, U. Rohlfing, S. Weingaertner, K. Klinger, D. Koob, K. Manz, and U. Lemmer, “New design tools for LED headlamps,” Proc. SPIE, Vol. 7003, pp. 70032C-70032C-10, May 2008.
[8] John Bortz, Narkis Shatz, and Matthijs Keuper, “Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source,” Proc. SPIE, Vol. 5529, pp.8-16, Sept. 2004.
[9] J. J. Chen, and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” SPIE Opt .Eng., Vol. 49, pp.093001-1-093001-7, Sept. 2010.
第二章
[1] S. O. Kasap, “Optoelectronics and photonics: Principles and Practices,” New Jersey: Prentice Hall, pp.11-16, 2001.
[2] Eugene Hecht, “Optics (4th Edition),” Addison Wesley, 2001.
第三章
[1] X. Hao, Z. Zheng, X. Liu, and P. Gu, “Freeform surface lens design uniform illumination,” J. Opt. A: Pure Appl. Opt., Vol. 10, No. 7, pp.075005-1-075005-6, Jul. 2008.
[2] H. Ries, and J. Muschaeck, “Tailored freeform optical surfaces,” J. Opt. Soc. Am. A, Vol. 19, No. 3, pp.590-595, Mar. 2002.
[3] John Bortz, Narkis Shatz and, Matthijs Keuper, “Optimal design of a nonimaging TIR doublet-lens illumination system using an LED source,” Proc. of SPIE, Vol.5529, pp.8-16, Sept. 2004.
[4] Jae Young Joo, and Sun Kyu Lee, “Miniaturized TIR Fresnel Lens for Miniature Optical LED Applications,” International Journal of Precision Engineering and Manufacturing, Vol. 10, No. 2, pp.137-140, Apr. 2009.
[5] Y. Y. Chen, I J. Chen, A. J. W. Whang, and L. T. Chen, “Analysis of Die-Imaging and Yellow Hue Phenomena in LED TIR Lens,” Proc. of SPIE, Vol. 7059, pp.70590O-70590O-11, Aug. 2008.
第四章
[1] Z. R. Zheng, X. Hao, and X. Liu, “Freeform surface lens for LED uniform illumination,” Opt. Express, Vol. 16, No.17, pp.12958-12966, Dec. 2008.
[2] Stefka Nikolova Kasarova, Nina Georgieva Sultanova, Christo Dimitrov Ivanov, and Ivan Dechev Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Materials, Vol. 29, pp.1481-1490, Sept. 2006.
[3] S. O. Kasap, “Optoelectronics and photonics: Principles and Practices,” New Jersey: Prentice Hall, pp.255, 2001.
[4] K. Kreske, “Optical Design of a Solar Flux Homogenizer for Concentrator Photovoltaics,” Appl. Opt., Vol. 41, pp.2053-2058, Apr. 2002.
第五章
[1] Kensuke Nishioka, Tatsuya Takamoto, Takaaki Agui, Minoru Kaneiwa, Yukiharu Uraoka, and Takashi Fuyuki, “Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data,” Solar Energy Material and Solar Cells, Vol. 90, No. 1 pp. 57-67, Jan. 2006.
[2] M. A. Mosalam Shaltout, M. M. El-Nicklawy, A. F. Hassan, U. A. Rahoma, and M. Sabry, “The temperature dependence of the sprectral and efficiency behavior of Si solar cell under low concentrated solar radiation,” Renewable Energy, Vol. 21, pp. 445-458, Nov. 200.
[3] M.Cui, N. F. Chen, X. L. Yang, and H. Zhang, “Fabrication and temperature dependence of a GaInP/GaAs/Ge tandem solar cell,” Journal of Semiconductors, Vol. 33, No. 2, pp. 024006-1-024006-4, Feb. 2012.