研究生: |
歐明達 Ou, Ming-Dar |
---|---|
論文名稱: |
雙邊貼附有雙壓電片之Timoshenko樑承受移動負載之動態分析 Dynamic Analysis of Timoshenko Beam with Bilateral Surface Mounted Two Piezoelectric Material under Moving Load |
指導教授: |
王榮泰
Wang, Rong-Tyai |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 複合材料 、壓電片 、移動負載 、模態法 |
外文關鍵詞: | Composite Timoshenko beam, Piezoelectric, modal analysis, moving load |
相關次數: | 點閱:102 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討一根雙邊各貼附有兩塊壓電片之複合材料懸臂樑承受移動負載時之振動分析,並採用模態法來分析並探討在移動負載下結構所產生之響應。基於Timoshenko樑理論,在不考慮阻尼、溫度效應下,將結構分為五個跨距,其中一、三與五跨距樑皆為複合材料結構,二、四跨距樑為壓電材料¬¬ 複合材料樑 壓電材料所組成的三明治結構。
模態法方面,利用結構位移關係、應力場、應變場推導出應變能、動能,再利用Hamilton`s principle建立整體結構之統御方程式。由統御方程式與邊界條件可進一步求得結構之自然頻率與模態形狀函數。由模態形狀函數推導出整體結構受移動負載之動態方程式,再利用模態疊加法與Runge-Kutta Method求解動態響應。進而探討結構之響應、壓電片之電荷收集情形,最後也探討移動負載之速度對於整體結構響應的變化,以及找出移動負載之臨界速度。
The purpose of this thesis is to investigate the dynamic behavior of a piezoelectric structure under a moving load. The structure is a five-span composite Timoshenko beam with two pairs of piezoelectric material mounted on the surface of the second and fourth span. Both the temperature effect and viscous effect are not included. The governing equations and boundary conditions of the entire structure are derived via the Hamilton`s principle. The natural frequencies and the corresponding mode shape functions are obtained from analytical method. The modal-analysis method is used to investigate the dynamic response of the entire structure and the voltage collected by the piezoelectric segments caused by the moving load. The effects of geometric conditions of the structure, such as the thickness of the beam or the piezoelectric segments, the composite fiber angle and the length of each span are considered. The velocity effects of the moving load are investigated. There is a critical velocity of the moving load to cause the absolute maximum deflection of the host beam and the absolute maximum voltage collected by the piezoelectric segments.
參考文獻
[1] Hamada, T.R. “Dynamic Analysis Of A Beam Under A Moving Force: A Double Laplace Transform Solution”, Journal of Sound and Vibration ,Vol.74(2), 221-233, 1981.
[2] Jong-Dar Yau, “Vibration Of Simply-supported Compound Beams To Moving Loads”, Journal of Marine Science and Technology ,Vol.12 No.4, 319-328, 2004.
[3] Olesson, M. “ On The Fundamental Moving Load Problem”, Journal of Sound and Vibration ,Vol.145(2), 299-307, 1991.
[4] Johansson, C. and Pacoste, C.“Closed-form Solution For The Mode Superposition Analysis Of The Vibration In Multi-span Beam Bridges Caused By Concentrated Moving Loads”, Computers and Structures, Vol.119, 85-94, 2013.
[5] Zhu, X.Q. and Law, S.S. “Moving Forces Identification On A Milti-span Continuous Bridge”, Journal of Sound and Vibration Vol.228(2), 377-396, 1999.
[6] Seroj Mackertich, “Moving Load On A Timoshenko Beam”, Journal of the Acoustical Society of America Vol.88, 1175-1178, 1990.
[7] Pawel Śniady, “Dynamic Response Of A Timoshenko Beam To A Moving Force”, Jornal of Applied Mechanics ,Vol.75, 024503-1 - 024503-4, 2008.
[8] Kusculioglu, Z.K. and Fallahi, B. “Finite Element Model Of A Beam With A Piezoceramic Patch Actuator”, Journal of Sound and Vibration ,Vol.276, 27-44, 2004.
[9] Mohammadimehr , M. and Mohammadi Hooyeh, H. “Free Vibration Analysis Of Double-bonded Isotropic Piezoelectric Timoshenko Microbeam Based On Strain Gradient And Surface Stress Elasticity Theories Under Initial Stress Using Differential Quadrature Method”, Mechanics of Advanced Materials and Structure , Vol.24 No.4, 287-303, 2017.
[10] Taehyun Kim and Ilwook Park, “Forced Vibration Of A Timoshenko Beam Subjected To Stationary And Moving Loads Using The Modal Analysis Method”, Shock and Vibration, 19-25, 2017.
[11] Legner, D. and WackerfuB, J. “An Advanced Finite Element Formulation For Piezoelectric Beam Structure”, Computational Mechanics ,Vol.52, 1331-1349, 2013.
[12] Sulbhewar, Litesh N. and Raveendranath, P. “A Timoshenko Piezoelectric Beam Finite Element With Consistent Performance Irrespective Of Geometric And Material Configuration”, Latin American Journal of Solids and Structures ,Vol.13, 992-1015, 2016.
[13] Pan, J., Hansen, C. H. and Snyder, S. D. “A study of response of a simple supported beam to excitation by a piezoelectric actuator,” Journal of Intelligent Material Systems and Structures, Vol.3,pp. 120-130,1992.
[14] Yoshimura , T., Hino, J. and Ananthanarayana, N. “Vibration analysis of nonlinear beam subjected to moving loads by use Galerkin method,” Journal of Sound and Vibration, Vol. 104, pp. 179-186, 1986.
[15] 吳弘志,具單層貼附式壓電材料之Timoshenko樑振動分析,成功大學工程科學系碩士論文, 2013.