簡易檢索 / 詳目顯示

研究生: 羅勗誠
Lo, Hsu-cheng
論文名稱: 以分子動力學方法模擬在溫度與尺寸效應下有蓋之單壁奈米碳管對銅基板進行深孔加工之研究
Investigation on the nanoindentation of a copper substrate by single walled carbon nanotube tips
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 51
中文關鍵詞: 分子動力學奈米碳管深孔加工
外文關鍵詞: molecular dynamics simulation, carbon nanotube, deep indentation
相關次數: 點閱:87下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用分子動力學的方法,分析單壁奈米碳管對銅基板進行深孔加工的相關性質與現象。由研究結果指出,可將奈米碳管隨著溫度變化把加工能力依照長度區分為三大類。並藉由對深孔加工做廣泛的定量分析,顯示出只有長度較短的單壁奈米碳管在進行深孔加工的過程中不會發生挫曲的現象。利用較短的單壁奈米碳管對銅基板進行深孔加工後,會在銅基板上產生明顯的中空孔洞,而孔洞週圍的結構只受到非常輕微的影響。

    Deep nanoindentation of a copper substrate by single walled carbon nanotubes (SWCNTs) has been analyzed using molecular dynamics simulations. Three categories of SWCNTs and their relationship with temperature and nanotube length have been extensively investigated. The results of this comprehensive quantitative analysis for deep indentation demonstrate that only SWCNTs with relatively short length can indent into a substrate up to a desired depth without buckling. Most notably, a permanent hollow hole with a high aspect ratio will be produced on the copper substrate, while copper atoms in close proximity to the hole are only slightly disordered.

    摘要……………………………………………………………………Ⅰ 誌謝……………………………………………………………………Ⅲ 目錄……………………………………………………………………Ⅳ 表目錄…………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅶ 符號說明………………………………………………………………Ⅸ 第一章緒論 1-1前言…………………………………………………………………1 1-2文獻回顧……………………………………………………………2 1-2-1奈米壓痕技術在製造奈米結構上的應用………………………2 1-2-2奈米碳管與傳統探針結合之方法………………………………4 1-2-3奈米碳管做為探針使用之優與相關研究………………………7 1-2-4其它製造奈米結構的方法………………………………………10 1-3研究動機與目的……………………………………………………12 第二章模擬方法、流程與物理模型的建立……………………………14 2-1以奈米碳管進行深孔加工之物理模型建立………………………15 2-2模擬流程與參數設定………………………………………………19 2-3系統中所選用之勢能函數…………………………………………22 第三章 模擬結果分析與討論…………………………………………29 3-1奈米碳管之加工性能分析與討論…………………………………29 3-2可加工之奈米碳管相關數據與溫度效應分析與討論……………35 3-3以奈米碳管進行加後之孔洞品質討論……………………………39 第四章結論與末來展望……………………………………………….44 4-1結論………………………………………………………………..44 4-2末來展望……………………………………………………………46 參考文獻……………………………………………………………… 47

    【1】H. Ichimura and, I. Ando, “Mechanical properties of arc-evaporated CrN coatings: Part I — nanoindentation hardness and elastic modulus”, Surf. Coat. Tech. 145, 88(2001)
    【2】A. A. Volinsky, J. B. Vella, and W. W. Gerberich, “Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation”, Thin Solid Films 429, 201(2003)
    【3】S. Sundararajan, and B. Bhushan, “Development of AFM-based techniques to measure mechanical properties of nanoscale structures”, Sensor Actuat. A-Phys. 101, 338(2002)
    【4】H. C. Barshilia, and K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy”, Surf. Coat. Tech. 155, 195(2002)
    【5】P. Vetriger, J. Brugger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.Widmer, and G. Binnig, “Ultrahigh density, high-data-rate NEMS-based AFM data storage system”, Microelectron. Eng. 46, 11(1999)
    【6】G. Binnig, M. Despont, U. Drechsler, W. Haberle, M. Lutwyche, and P. Vetriger, “Ultrahigh-density atomic force microscopy data storage with erase capability”, Appl. Phys. Lett. 74, 1329(1999)
    【7】M. Despont, J. Brugger, U. Drechsler, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.Widmer, G. Binnig, H. Rohrer, and P. Vetriger, “VLSI-NEMS chip for parallel AFM data storage”, Sensor Actuat. A-Phys. 80, 100(2000)
    【8】P. Vetriger, M. Despont, U. Drechsler, U. Durig, W. Haberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.Widmer, and G. Binnig, “The "Millipede" - More than one thousand tips for future AFM data storage”, IBM J. Res. Develop. 44,323(2000)
    【9】S. Y. Choi, P. R. Krauss, and P. J. Renstorm, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett. 67, 3114(1995)
    【10】J. Haisma, M. Verheijen, van den Heuvel and J. van den Berg, “Mold-assisted nanolithography: A process for reliable pattern replication”, J. Vac. Sci. Technol. B 14, 4124(1996)
    【11】A. Kumar, and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of a stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching”, Appl. Phys. Lett. 63, 2002(1993)
    【12】S. Akita, H. Nishijima, T. Kishida, and Y. Nakayama, “Nanoindentation of Polycarbonate Using Carbon Nanotube Tip”, Jpn J. Appl. Phys. 39, 7086, (2000)
    【13】H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, “Nanotubes as nanoprobes in scanning probe microscopy” , Nature 384, 147, (1996)
    【14】K. Yamamoto, S. Akita and Y. Nakayama , “Orientation of carbon nanotubes using electrophoresis” Japan. J. Appl. Phys. 35, L917, (1996)
    【15】R. M.D. Stevens, N.A . Frederick, B.L. Smith, D.E. Morse, G.D. Stucky, and P.K. Hansma, “Carbon nanotubes as probes for atomic force microscopy ”, Nanotechnology 11, 1, (2000)
    【16】S. Akita, and Y. Nakayama, “ Scanning Probe Microscope Tip with Carbon Nanotube Truss”, Jpn.J. Appl. Phys 43, 7B, 4499, (2004)
    【17】J. Tang, B. Gao, H. Geng, O. D. Velev, L. C. Qin, and O. Zhou, “Assembly of ID nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis ”,Adv. Mater. 15, 1352, (2003)
    【18】J. H. Hafner, C. L. Cheung and C. M. Lieber, “Growth of nanotubes for probe microscopy tips ”, Nature 398, 761, (1999)
    【19】C.V. Nguyen, Q. Ye and M. Meyyappan, “Carbon nanotube tips for scanning probe
    microscopy: fabrication and high aspectratio nanometrology”, Meas. Sci. Technol. 16,2138, (2005)
    【20】P. M. Ajayan, O. Stemphan, C. Colliex, and D. Trauth, “ALIGNED CARBON NANOTUBE ARRAYS FORMED BY CUTTING A POLYMER RESIN-NANOTUBE COMPOSITE ”, Science 265, 1212, (1994)
    【21】D. Qian, E. C. Dickey , R. Andrews, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites ”, Appl. Phys. Lett. 76, 2868, (2000)
    【21】F. Li, H.M.Cheng, S. Bai, G. Su, and M. S. Dresselhaus, “Transport properties of Bi nanowire arrays ”, Appl. Phys. Lett. 77, 3161, (2000)
    【22】J. A. Harrison, S. J. Stuart, D. H. Robertson, and C. T. White, “Properties of Capped Nanotubes When Used as SPM Tips”, J. Phys. Chem. B 101, 9682, (1997)
    【23】N. Yao and V. Lordi, “Carbon nanotube caps as springs: Molecular dynamics simulations”, Phys. Rev. B 58, 12649, (1998)
    【24】A. Garg, J. Han, and S. B. Sinnott, “Interactions of Carbon-Nanotubule Proximal Probe Tips with Diamond and Graphene ”, Phys. Rev. Lett. 81, 2260, (1998)
    【25】A. Garg and S. B. Sinnott, “Molecular dynamics of carbon nanotubule proximal probe tip-surface contacts”, Phys. Rev. B 60, 13786, (1999)
    【26】A. B. Tutein, S. J. Stuart, and J. A. Harrison, “Indentation Analysis of Linear-Chain Hydrocarbon Monolayers Anchored to Diamond”, J. Phys. Chem. B 103, 11357, (1999)
    【27】G. Cao and X. Chen, “Mechanisms of nanoindentation on single-walled carbon
    nanotubes: The effect of nanotube length”, J. Mater. Res. 21, 1048, (2006)
    【28】F. N. Dzegilenko, D. Srivastava and S. Saini, “Nanoscale etching and indentation of
    a silicon(001) surface with carbon nanotube tips ”, Nanotechnology 10, 253, (1999)
    【29】M.D. Shirk, and P.A. Molian, “Ultra-short pulsed laser ablation of highly oriented pyrolytic graphite ”, Carbon 39, 1183, (2001)
    【30】M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials”, J. Appl. Phys. 85, 9, 6803, (1999)
    【31】Shizhen Xu, Jianrong Qiu, Tianqing Jia, Chengbin Li, Haiyi Sun, Zhizhan Xu, “Femtosecond laser ablation of crystals SiO2 and YAG” Optics Communications 274, 163, (2007)
    【32】J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics” , J. Chem. Phys. 18, 817,( 1950)
    【33】G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, “Intermolecular Forces”, Oxford University Press, London, (1987)
    【34】J. Tersoff, “New empirical model for the structural properties of silicon”, Phys. Rev. Lett., Vol. 56, 632 , 1986.
    【35】J. Tersoff, “New empirical approach for the structure and energy of covalent systems”,Phys. Rev. B 37, 6991, (1988)
    【36】J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties”,Phys. Rev. B 38, 9902, (1988)
    【37】J. Tersoff, “Modeling solid-state chemistry:Interatomic potentials for multicomponent systems”,Phys. Rev. B, Vol. 39, 5566, 1989.
    【38】J. Tersoff, “Energies of fullerence ”Physical Review B 46, 23,546 (1992)
    【39】D.W. Brenner, O. A. Shenderova, Judith A Harrison, S.J Stuart, B. Ni and S. B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons ”, J. Phys. Condens. Matter 14, 783, (2002)
    【40】Lier G.V., Alsenoy C.V., Doren V.V., Geerlings P., Chemical Physics Letters 326, 181-185 (2000)
    【41】Z. Peralta-Inga, S. Boyd, J.S. Murray, C.J. O’Connor, P. Politaer, Structural Chemistry 14, 5, (2003)
    【42】J.Y. Hsieh, J. M. Lu, M.Y. Huang and C.C. Hwang, Nanotechnology 17, 3920, (2006)
    【43】G. C. Abell, “Empirical chemical pseudopotential theory of molecular and metallic bonding”, Phys. Rev. B 31, 6184, (1985)
    【44】V. Rosato, M. Guillope, and B. Legrand, “Thermodynamics and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophical Magazine A 59, 21, (1988)
    【45】J. Y. Hsieh, S. P. Ju, S. H. Li, and C. C. Hwang, “Temperature dependence in nanoindentation of a metal substrate by a diamondlike tip” Phys. Rev. B 70, 195424, (2004)

    下載圖示 校內:2008-08-28公開
    校外:2009-08-28公開
    QR CODE