簡易檢索 / 詳目顯示

研究生: 傅思逸
Fu, Ssu-I
論文名稱: 砷化鎵系列異質接面雙極性電晶體之研究
Study of GaAs-Based Heterojunction Bipolar Transistors (HBTs)
指導教授: 劉文超
Liu, Wen-Chau
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 46
中文關鍵詞: 硫化異質接面雙極性電晶體
外文關鍵詞: Sulfur, HBT
相關次數: 點閱:105下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本篇論文中,我們研究與探討使用硫化和非硫化技術的磷化銦鎵/砷化鎵異質接面雙極性電晶體的直流特性與溫度變化關係。基於硫化鈍化層的使用,射極-基極接面的串聯電阻可以有效的減小,因而使串聯電阻發生區域(電流增益減小的區域),可在更高電流區域才發現。再者硫化處理的元件,可操作在極低的集極電流區(10-11安培),因而提供使用者在低功率電子電路上的應用。此外,硫化處理的元件可以明顯的減小集極-射極的補償電壓和射極尺寸效應。
      另一方面,一種新穎之磷化銦鎵/砷化鋁鎵/砷化鎵的組合式射極異質接面雙極性電晶體,其元件特性將在第四章中予以研究及討論。有著線性漸變分佈的砷化鋁鎵層組合式射極異質接面雙極性電體,由於其射極到基極間能隙以漸變式減小,且適當的選取鋁的莫耳分率(x=0.11)可使元件呈現出幾乎連續性的導電帶結構。實驗結果顯示組合式射極異質接面雙極性電晶體有很好的直流特性,像較低的集極-射極補償電壓,極低的集極電流範圍和一個較寬廣的集極電流操作區域。

      In the first part of this thesis, the changed performances between the InGaP/GaAs heterojunction bipolar transistors (HBTs) with- and without- sulfur treatment are detailed investigated. For meet the best completeness, the factor of temperature are also included in this studied. Experimentally, the remarkably benefits of sulfur treatment for the general HBTs can be summarized as (1) reduction of the collector-emitter offset voltage DVCE, (2) insensitivity of the emitter size effect, and (3) increment of the operated collector range, respectively. Those offer the promise for lower power consumption and longer-recharged electronics applications.
      On the other hand, a newly designed InGaP/AlxGa1-xAs/GaAs composite emitter heterojunction bipolar transistor (CEHBT) with a continuous conduction-band structure is fabricated and studied in chapter 4. By introducing a compositionally linear-graded AlGaAs layer into the conventional InGaP/GaAs heterojunctions, the zero conduction-band discontinuity and the completely deleted potential spike could be obtained. Due to the suppression of potential spikes at the emitter/base junction, the studied device shows better dc performances such as the lower offset voltage, lower saturation voltage, uniform current gain and lower turn-on voltage. In addition, the better ac performances are achieved. Consequently, the designed structure provides the promise for the high-performance analog, digital,and microwave device applications.

    Abstract (Chinese) Abstract (English) Figure Captions Chapter 1. Introduction..........................................1 Chapter 2. InGaP/GaAs Heterojunction Bipolar Transistors (HBTS) with Sulfur Treatment 2.1. Introduction ...............................................4 2.2. Device structure and fabrication process ...................5 2.3. The mechanism of sulfur treatment ..........................7 2.3. Experimental results and discussion ........................8 2.4. Summary ...................................................13 Chapter 3. Influences of Surface Sulfur Treatments on the Temperature-Dependent Characteristics of Heterojunction Bipolar Transistors (HBTs) 3.1. Introduction ..............................................14 3.2. Transmission line model (TLM)..............................15 3.3. Experimental results and discussion .......................17 3.4. Conclusion ................................................20 Chapter 4. Comprehensive Study of an InGaP/AlxGa1-xAs/GaAs Composite-Emitter Heterojunction Bipolar Transistor (CEHBT) 4.1. Introduction ..............................................22 4.2. Device structure and fabrication process ..................23 4.3. Experimental results and discussion .......................25 4.4. Summary ...................................................30 Chapter 5. Conclusion and Prospects 5.1. Conclusion ................................................31 5.2. Future work ...............................................32 References......................................................34 Figures Publication List

    [1] P. M. Asbeck, M. F. Chang, K. C. Wang, D. L. Miller, G. J. Sullivan, N. H. Sheng, E. A. Sovero, and J. A. Higgins, “Heterojunction bipolar transistors for microwave and millimeter-wave integrated circuits,” IEEE Trans. Electron Devices, Vol. 34, pp. 2571 -2579, 1987.

    [2] M. E. Kim, A. K. Oki, G.M. Gorman, D. K. Umemoto, and J. B. Camou, “GaAs heterojunction bipolar transistor device-And IC technology for high-performance analog and microwave applications,” IEEE Trans. on Microwave Theory and Techniques, Vol. 37, pp. 1286 -1303, 1989.

    [3] F. Ren, C. R. Abernathy, S. J. Pearton, J. R. Lothian, P. W. Wisk, T. R. Fullowan, Y. K. Chen, L. W. Yang, S. T. Fu, R. S. Brozovich, and H. H. Lin, “Self-aligned InGaP/GaAs heterojunction bipolar transistors for microwave power application,” IEEE Electron Device Lett. Vol. 14, pp. 332 –334,1993.

    [4] W. Liu, S. K. Fan, T. Henderson, and D. Davito, “Microwave performance of a self-aligned GaInP/GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., Vol. 14, pp. 176-178, 1993.

    [5] W. Schockley , "Circuit elements utilizing semiconductive material," U. S. Patent, N. 2569, p. 347, 1951.

    [6] H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," IEEE Proc. Vol. 70, p.13, 1982.

    [7] S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” B.J. Appl. Phys. Vol. 16, p.133, 1965.

    [8] W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron. Vol. 15, p.12, 1972.

    [9] M. J. Mondry and H. Kroemer, "Heterostructure bipolar transistor using a (Ga,InP) emitter on a GaAs base, grown by molecular beam epitaxy,” IEEE Electron Device Lett. Vol. EDL-6, p.175, 1985.

    [10] S. L. Delage, M. A. di Forte-Poisson, H. Blanck, C. Brylinski, E. Chartier, E. Chartier, and P. Collot, “First microwave characterization of LP-MOCVD grown GaInP/GaAs self-aligned HBT,” Electron. Lett. Vol. 27, p.253, 1991.

    [11] U. Eriksson, P. Evaldsson, and K. Streubel, “Fabrication of a 1.55 VCSEL and an InGaAsP-InP HBT from a common epitaxial structure,” IEEE Photon. Technol. Lett., Vol. 11, p. 403, 1999.

    [12] H. Wang, K. W. Chang, L. T. Tran, J. C. Cowles, T. R. Block, E.W. Lin, G.S. Dow, A. K. Oki, D. C. Streit, B. R Allen, “Low phase noise millimeter wave frequency sources using InP-based HBT MMIC technology,” IEEE J. Solid State Circuits, Vol. 31, p. 1419, 1996.

    [13] P. Freeman, Z. Xiangkun, I. Vurgaftman, J. Singh, P. Bhattacharya, “Optical control of 14GHz MMIC oscillators based on InAlAs/InGaAs HBTs with monolithically integrated optical waveguides,” IEEE Trans. Electron Devices, Vol. 43, p. 373, 1996.

    [14] J. N. Burghartz, S. R. Mader, B. J. Ginsberg, B. S. Meyerson, J. M. C. Stork, C. L. Stanis, U. Y. C. Sun, and M. R. Polcari, “Self-aligned bipolar epitaxial base n-p-n transistors by selective epitaxy emitter window (SEEW) technology,” IEEE Trans. Electron Devices, vol.38, pp. 378-385, 1991.

    [15] M. M. Jahan and A. F. M. Anwar, “Junction temperature dependence of high-frequency noise in heterojunction bipolar transistors,” IEEE Electron Device Lett., vol.16, pp. 551-553, 1995.

    [16] M. M. Jahan and A. F. M. Anwar, “Early voltage in double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol.42, pp. 2028-2029, 1995.

    [17] W. C. Liu and W. S. Lour, “Influence of the potential spike on heterostructure-emitter bipolar transistor,” J. Appl. Phys., vol. 69, no. 2, pp. 1063-1066, 1991.

    [18] W. C. Liu and W. S. Lour, “Applications of transition-emitter superlattice to biploar transistor,” Jpn. J. Appl. Phys., vol. 30, no. 4A, pp. L561-563, 1991.

    [19] W. C. Liu and W. S. Lour, “A new functional, resonant-tunneling bipolar transistor with a superlattice emitter,” J. Appl. Phys., vol. 70, no. 1, pp. 485-489, 1991.

    [20] W. C. Liu, Y. S. Lee, and D. F. Guo, “A new resonant-tunneling bipolar transistor with triple-well emitter structure,” Solid-State Electron., vol. 34, no. 12, pp. 1457-1459, 1991.

    [21] C. Y. Chen, W. C. Wang, W. H. Chiou, C. K. Wang, H. M. Chuang, S. Y Cheng, and W. C. Liu, “A comparative study of GaAs- and InP-based superlattice emitter resonant tunneling bipolar transistors (SE-RTBT's),” Solid-State Electron., vol. 46, no. 9, pp. 1289-1294, 2002.

    [22] C. Y. Chen, W. H. Chiou, C. H. Yen, H. M. Chuang, J. Y. Chen, C. C. Cheng, and W. C. Liu, “Study on dc characteristics of an interesting InP/InGaAs tunneling-emitter bipolar transistor with double heterostructures,” J. Vac. Sci. & Technol., vol. 21, pp. 82-86, 2003.

    [23] W. C. Liu, W. S. Lour, and C. Y. Chang, “Application of superlattice gate and modulation-doped buffer for GaAs power MESFET grown by MBE,” Appl. Phys. A- Solids & Surface, vol. 49, no. 3, pp. 321-324, 1989.

    [24] W. C. Liu, C. Y. Chang, W. C. Hsu, W. S. Lour, and R. L. Wang, “Superlattice gate and graded superlattice buffer for microwave power MESFET grown by MBE,” J. Vac. Sci. & Technol., vol. B7, no. 4, pp. 589-592, 1989.

    [25] S. J. Chang and C. P. Lee, “Light-induced sidegating effect in GaAs MESFET's,” IEEE Trans. Electron Devices, vol.40, pp. 2186-2191, 1993.

    [26] H. M. Chuang, C. K. Wang, K. W. Lin, W. H. Chiou, C. Y. Chen, and W. C. Liu, “Comparative study on DC characteristics of In0.49Ga0.51P-channel heterostructure field-effect transistors with different gate metals,” Semicond. Sci. Technol., vol. 18, pp. 319-324, 2003.

    [27] W. C. Liu, C. H. Lin, C. Y. Sun and W. S. Lour, “S-shaped negative differential resistance in a single GaAs quantum-well switching device,” Jpn. J. Appl. Phys., vol. 29, no. 8, pp. L1385-1387, 1990.

    [28] W. C. Liu, C. H. Lin, Y. S. Lee, and D. F. Guo, “GaAs quantum well negative differential resistance device prepared by molecular beam epitaxy,” J. Vac. Sci. & Technol., vol. B9, no. 2, pp. 243-248, 1991.

    [29] W. C. Liu and W. S. Lour, “Negative-differential- resistance (NDR) superlattice-emitter transistor,” Jpn. J. Appl. Phys., vol. 30, no. 4A, pp. L564-567, 1991.

    [30] W. C. Liu and W. S. Lour, “Temperature-dependence of double negative differential resistance of superlattice-emitter transistor,” Solid-State Electron., vol. 34, no. 8, pp. 921-924, 1991.

    [31] W. C. Liu, C. Y. Sun, W. S. Lour, and D. F. Guo, “Application of sawtooth doping superlattice for negative-differential-resistance devices fabrication,” J. Vac. Sci. & Technol., vol. B10, no. 1, pp. 60-66, 1992.

    [32] W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, no. 4, pp. 445-456, 1995.

    [33] W. C. Liu, J. H. Tasi, W. S. Lour, L. W. Laih, K. B. Thei, and C. Z. Wu, “Multiple negative-differential-resistance (NDR) of InGaP/GaAs heterostructure-emitter bipolar trasistor (HEBT),” IEEE Electron Device Lett., vol. 17, no. 3, pp. 130-132, 1996.

    [34] L. W. Laih, W. C. Liu, J. H. Tasi, W. C. Hsu, Y. T. Ting, and R. C. Liu, “Anomalous negative-differential-resistance (NDR) characteristics of n+-GaAs/n--GaAs/n+-In0.2Ga0.8As/i-GaAs structure,” Superlattices & Microstructures, vol. 20, no. 1, pp. 7-13, 1996.

    [35] L. W. Laih, C. Z. Wu, S. Y. Cheng, J. H Tsai, and W. C. Liu, “Anomalous negative-differential-resistance (NDR) characteristics of step-doped-channel transistor (SDCT),” IEE Electron. Lett., vol. 32, no. 21, p.2014-2015, 1996.

    [36] W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, K. B. Thei and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switching for multiple-valued logic application,” IEEE Trans. Electron Devices, vol. 44, no. 4, pp. 520-525, 1997.

    [37] B. J. Skromme, C. J. Sandroff, E. Tablonovitch, and T. Gmitter, “Effects of passivation ionic films on the photoluminescence properties of GaAs,” Appl. Phys. Lett., vol. 51, pp. 2022-2024, 1987.

    [38] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.

    [39] Y. Takanashi and H. Fukano, “Low-frequency noise of InP/InGaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 45, pp. 2400-24706, 1998.

    [40] M. Borgarino, R. Plana, S. L. Delage, F. Fantini, and J. Graffeuil, “Influence of surface recombination on the burn-in effect in microwave GaInP/GaAs HBT's,” IEEE Trans. Electron Devices, vol. 46, pp. 10-16, 1999.

    [41] R. lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.

    [42] R. Driad, Z. H. Lu, S. Charbonneau, W. R. McKinnon, S. Laframoboise, P. J. Poole, and S. P. McAlister, “Passivation of InGaAs surfaces and InGaAs/InP heterojunction bipolar transistors by sulfur treatment,” Appl. Phys. Lett., vol. 73, pp. 665-667, 1998.

    [43] C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, “Dramatic enhancement in the gain of a GaAs/AlGaAs heterostructure bipolar transistor by surface chemical passivation,” Appl. Phys. Lett., vol. 51, pp. 33-35, 1987.

    [44] L. Geelhaar and R. A. Bartynski, “Photoluminescence and x-ray photoelectron spectroscopy study of S-passivated InGaAs(001),” J. Appl. Phys., vol. 80, pp. 3076-3082, 1996.

    [45] William Liu, “Handbook of III-V Heterojunction Bipolar transistors,” John Wiley & Sons, New York, pp.142-152, 1998.

    [46] N. Hayama, and K. Honjo, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT's with AlGaAs surface passivation layer,” IEEE Electron Device Lett., vol.11, pp. 388-390, 1990.

    [47] W. Liu and J. S. Harris, Jr., “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.

    [48] B. Mazhari, G. B. Gao, and H. Morkoc, “Collector-emitter offset voltage in heterojunction bipolar transistors,” Solid-State Electron, vol. 34, pp. 315-321, 1991.

    [49] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterostructure-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.

    [50] B. Willen, U. Westergren, and H. Asonen, “High-gain, high-speed InP/InGaAs double-heterojunction bipolar transistor with a step-graded base-collector heterojunction,” IEEE Trans. Electron Device Lett., vol. 16, pp. 479-481, 1995.

    [51] S. Y. Deng, C. H. Wu, and Joseph Y. M. Lee, “A study on the transient effect due to hydrogen passivation in InGaP HBTs”, IEEE Electron Device Lett., vol. 24, pp. 372-374, 2003.

    [52] S. S. Tan and A. G. Milnes, “Consideration of the frequency performance potential of GaAs homojunction and heterojunction n-p-n transistors,” IEEE Trans. Electron Devices, Vol. ED-30, p.1289, 1983.

    [53] T. Ishibashi and Y. Yamauchi, “A possible near-ballistic collection in an AlGaAs/GaAs HBT with a modified collector structure,” IEEE Trans. Electron Devices, Vol. ED-35, p.401, 1988.

    [54] R. Lyer, R. R. Chang, and D. L. Lile, “Sulfur as a surface passivation for InP,” Appl. Phys. Lett., vol. 53, pp. 134-136, 1988.

    [55] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.

    [56] J. I. Song, C. Caneau, K-B Chough, and W. P. Hong, “GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax, and breakdown voltage,” IEEE Electron Device Lett, Vol. EDL-15, p.10, 1994.

    [57] M. Borgarino, R. Plana, S. L. Delage, F. Fantini, and J. Graffeuil, “Influence of surface recombination on the burn-in effect in microwave GaInP/GaAs HBT's,” IEEE Trans. Electron Devices, vol. 46, pp. 10-16, 1999.

    [58] C. Y. Chen, S.Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP-InGaAs Tunneling Emitter Bipolar Transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.

    [59] S. Y. Cheng, J. Y. Chen, C. Y. Chen, H. M. Chuang, C. H. Yen, K. M. Lee and W. C. Liu “Comprehensive study of InGaP / AlXGa1-XAs /GaAs heterojunction bipolar transistors (HBTs) with different doping concentrations of AlXGa1-XAs graded layers”, Semicond. Sci. Technol., Vol.19, pp.351-358, 2004.

    [60] E. Yablonovitch, R. Bhat, C. E. Zah, T. J. Gmitter, and M. A. Koza, “Nearly ideal InP/In0.53Ga0.47As heterojunction regrowth on chemically prepared In0.53Ga0.47As surfaces,” Appl. Phys. Lett., vol. 60, pp. 371-373, 1992.

    [61] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface recombination current in InGaP/GaAs heterojunction-emitter bipolar transistors,” IEEE Trans. Electron Devices, vol. 41, pp. 643-647, 1994.

    [62] K. Ikossi-Anastasiou, A. Ezis, K. R. Evans, and C. E. Stutz, “Low-temperature characterization of high-current-gain graded-emitter AlGaAs/GaAs narrow-base heterojunction bipolar transistor,” IEEE Trans. Electron Device Lett., vol. 13, pp. 414-417, 1992.

    [63] C. Y. Sun and W. C. Liu, “A new GaAs bipolar transistor with a doping-superlattice collector,” Solid-State Electron., vol. 35, no. 6, pp. 751-757, 1992.

    [64] W. S. Lour, W. C. Liu, D. F. Guo, and R. C. Liu, “Modeling the DC performance of hetrostructure-emitter bipolar transistor,” Jpn. J. Appl. phys., vol. 31, no. 8, pp. 2388-2393, 1992.

    [65] W. C. Liu, W. S. Lour, and Y. H. Wang, “Investigation of AlGaAs/GaAs superlattice-emitter resonant-tunneling bipolar transistor (SE-RTBT),” IEEE Trans. Electron Device, vol. 39, no. 10, pp. 2214-2219, 1992.

    [66] W. C. Liu, D. F. Guo, and W. S. Lour, “Application of an emitter-edge thinning technique to GaAs/AlGaAs double hetrostructure-emitter bipolar transistor,” Appl. Phys. Lett., vol. 61, no. 12, pp. 1441-1443, 1992.

    [67] W. S. Lour, W. C. Liu, C. Y. Sun, D. F. Guo, and R. C. Liu, “Multi-State superlattice-emitter resonant-tunneling bipolar transistor with circuit applications,” Superlattices & Microstructures, vol. 13, no. 1, pp. 81-86, 1993.

    [68] C. Y. Sun, W. C. Liu, D. F. Guo, W. S. Lour, and R. C. Liu, “Fabrication of heterostructure-emitter bipolar transistor with a doping-superlattice collector,” Superlattices & Microstructures, vol. 13, no. 1, pp. 75-79, 1993.

    [69] W. C. Liu, C. Y. Sun, W. C. Hsu, and D. F. Guo, “Application of doping-superlattice collector structure for GaAs bipolar transistor,” Jpn. J. Appl. Phys., vol. 32, no. 4, pp. 1575-1582, 1993.

    [70] Y. H. Wu, J. S. Su, W. C. Hsu, W. Lin, and W. C. Liu, “Characteristics of In0.53Ga0.47As/InP double and single heterojunction emitter bipolar transistors grown by LP-MOCVD,” Solid-State Electron., vol. 38, no. 4, pp. 767-769, 1995.

    [71] Y. H. Wu, J. S. Su, W. C. Hsu, W. C. Liu, and W. Lin, “A new InP-based hetrojunction bipolar transistor utilizing an In0.53Al0.22Ga0.25As base,” Appl. Phys. Lett., vol. 66, no. 6, pp. 347-348, 1995.

    [72] Yu-Huei Wu, Jan-Shing Sue, Wei-Chou Hsu, Wei Lin, Wen-Chau Liu, Ming-Jer Kao and Rong-Tay Hsu, “Emitter edge-thinning effect on InGaAs/InP double-heterostructure-emitter bipolar transistor,” Jpn. J. Appl. Phys. vol. 34, no. 11, pp. 5908-5911, 1995.

    [73] Y. H. Wu, J. S. Su, W. C. Hsu, W. Lin, and W. C. Liu, “Electrical characteristic of a lattice-matched In0.53Al0.22Ga0.25As/InP heterojunction bipolar transistor with zero potential spike at emitter-base heterojunction,” Solid-State Electron., vol. 38, no. 4, pp. 1755-1757, 1995.

    [74] K. B. Thei, J. H. Tsai, W. C. Liu, and W. S. Lour, “Characteristics of functional heterostructure-emitter bipolar transistor (HEBT‘s),” Solid-State Electron., vol. 39, no. 8, pp. 1137-1142, 1996.

    [75] J. H. Tsai, L. W. Laih, H. J. Shih, W. C. Liu, and H. H. Lin, “On the recombination currents effect of heterostructure-emitter bipolar transistors (HEBT’s),” Solid-State Electron., vol. 39, no. 12, pp. 1723-1730, 1996.

    [76] J. H. Tsai, S. Y. Cheng, P. H. Lin, W. C. Wang, J. Y. Chen, and W. C. Liu, “Modeling and analysis of heterostructure-emitter and heterostructure-base transistors (HEHBT’s),” Solid-State Electron., vol. 41, no. 8, pp. 1089-1094, 1997.

    [77] W. C. Liu, and W. S. Lour, “An improved heterostructure-emitter bipolar transistor (HEBT),” IEEE Electron Device Lett., vol. 12, pp. 474-476, 1991.

    [78] W. C. Liu, W. S. Lour, and D. F. Guo, “AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Devices ., vol. 39, pp. 2740-2744, 1992.

    [79] W. C. Liu, W. S. Lour, and D. F. Guo, “A new AlGaAs/GaAs double heterostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 60, pp. 362-364, 1992.

    [80] B. Agarwal, D. Mensa, R. Pullela, Q. Lee, U. Bhattacharya, L. Guthrie, and M. J. W. Rodwell, “A 277 GHz fmax transferred-substrate heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 18, pp. 228-231, 1997.

    [81] E. Alekseev, and D. Pavlidis, “DC and high frequency performance of AlGaN/GaN Heterojunction bipolar transistors,” Solid-State Electronics, vol. 44, pp. 245-252, 2000.

    [82] C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, and W. C. Liu, “A novel InP-InGaAs TEBT for ultra low current operations,” IEEE Electron Device Lett., vol. 24, pp. 126-128, 2003.

    [83] W. C. Wang, S. Y. Cheng, W. L. Chang, H. J. Shie, and W. C. Liu, “Investigation of InGaP/GaAs double delta-doped heterojunction bipolar transistor (D3HBT),” Semicond. Sci. Technol., vol. 13, pp. 630-633, 1998.

    [84] N. Chand, and H. Morkoc, “Doping effects and compositional grading in AlxGa1-xAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 32, pp. 1064-1069, 1985.

    [85] J. J Liou, C. S. Ho, L. L. Liou, and C. I. Huang, “An analytical model for current transistor in AlGaAs/GaAs abrupt HBTs with a setback layer,” Solid State Electron, vol. 36, pp. 819-825, 1993.

    [86] N. Chang, R. Fischer, and H. Morkoc, “Collector-emitter offset voltage in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 47, pp. 313-315, 1985.

    [87] S. Y. Cheng, “Comprehensive study of InGaP/AlGaAs/GaAs heterojunction bipolar transistor with a continuous conduction-band structure,” semicond. Sci. technol., vol. 17, pp. 701-717, 2002.

    [88] ATLAS, 2-D semiconductor device simulator, version 5.2.0.R. SILVACO Int., Santa Clara, CA, USA, 2000.

    [89] ATLAS II Users Manual, Silvaco International, Santa Clara, CA, USA, 2000.

    [90] K. S. Kim, Y. H. Cho, and B. D. Choe, “Determination of Al mole fraction for null conduction band offset in In0.5Ga0.5P/AlXGa1-XAs heterojunction by photoluminescence measurement,” Appl. Phys. Lett. Vol. 67, No. 12, pp. 1718-1720, 1995.

    [91] Y. F. Yang, C. C. Hsu, E. S. Yang, and Y. K. Chen, “Comparison of GaInP/GaAs heterostructure-emitter bipolar transistors and heterojunction bipolar transistors,” IEEE Trans. Electron Devices, Vol. 42, pp. 1210-1215, 1995.

    [92] H. Kroemer, “Heterostructure bipolar transistors and intrgrated circuits,” Proc. IEEE, Vol. 70, pp. 13, 1982.

    [93] H. K. Yow, P. A. Houston, C. M. Sidney Ng, C. Button, and J. S. Roberts, “High-temperature dc characteristics of AlXGa0.52-XIn0.48P/GaAs heterojunction bipolar transistors grown by metal organic vapor phase epitaxy,” IEEE Trans. Electron Devices, Vol. 43, pp. 2-7, 1996.

    [94] M. T. Fresina, Q. J. Hartmann, G. E. Stillman, “Selective self-aligned emitter ledge formation for heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol. 17, pp. 555-556, 1996.

    [95] M. Hafizi, “Submicron, fully self-aligned HBT with an emitter geometry of 0.3μm,” IEEE Trans. Electron Device Lett., Vol. 18, pp. 358-360, 1997.

    [96] Schumacher, L. G. Shantherama, J. R. Hayes, R. Bhat, R. Esagui, and M. Koza, “High-speed self-aligned InP/InGaAs double heterojunction bipolar transistor with high current driving capability,” IEE Electronics Lett., Vol. 24, pp. 1293-1294, 1998.

    [97] M. Hafizi, D. C. Streit, L. T. Tran, K. W. Kobayashi, D. K. Umemodo, A. K. Oki, S. K. Wang, “Experimental study of AlGaAs/GaAs HBT device design for power application,” IEEE Electron Device Lett., Vol.12, No.11, pp.581-583, 1991.

    [98] T. R. Chen, P. C. Chen, C. Gee, and N. B. Chaim, “A high-speed InGaAsP/InP DFB laser with an air-bridge contact configuration,” IEEE Photon. Technol. Lett., Vol. 5, No.1, pp. 1-3, 1993.

    [99] T. Fresina, D. A. Ahmari, P. J. Maries, Q. J. Hartmann, M. Feng, and G. E. Stillman, “High-speed, low noise InGaP/GaAs heterojunction bipolar transistors,” IEEE Electron Device Lett., Vol.16, No.12, pp.540-541, 1995.

    [100] F. Li, G. Post, Y. Nissim, a. Falcou, C. Courbet, S. Sanchez, and A. Scavennec, “A backside via holes etching technology for indium phosphide MMIC's,” International conference on Microwave and Millimeter wave technology proceedings, pp.64-67, 2000.

    下載圖示 校內:2005-06-17公開
    校外:2005-06-17公開
    QR CODE