簡易檢索 / 詳目顯示

研究生: 陳翼正
Chen, Yi-Cheng
論文名稱: 以二階準確度之基本前處理法解全速域流場
A Second Order Primitive Preconditioner for Solving All Speed Flows
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 沉浸邊界法流體與粒子的交互作用全速域流場二階準確度之基本前處理法
外文關鍵詞: all speed flows, second order primitive preconditioner
相關次數: 點閱:81下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文之目的在於以數值方法來模擬計算全速域流場現象,並在有黏滯性之不可壓縮流場內,研究並探討流體和粒子之間的交互作用對流場所產生的影響。計算方法以有限體積法來計算可壓縮奈威爾-史托克方程式(Navier-Stokes equations),並加入二階準確度之基本前處理法,去修正壓力項,使得本數值方法可求解可壓縮和不可壓縮流場之全速域流場。本方法同時使用LLF和AUSM+兩個方法求解介面數值通量。在計算流體與粒子的交互作用,則使用沉浸邊界法來模擬粒子的流場現象。
      在物理方面,首先選取了幾個簡單的例子:一維震波管流場、無黏滯性可壓縮流的斜震波反射、斜震波與邊界層的交互作用、有黏滯性不可壓縮流的方形空穴流場和流體流過一圓柱,來驗證本文數值方法之正確性,並探討雷諾數和黏滯係數對流場的影響。最後使用沉浸邊界法來模擬和探討粒子墜落運動和兩粒子墜落、碰撞、滾轉運動。

    A numerical method is developed to solve all speed flows. The method is applied to simulate the fluid field of the fluid-particle interaction.The numerical method uses a finite volume method to solve the compressible Navier-Stokes equations. Moreover, the second-order primitive preconditioner method is applied to correct the pressure field, which can effectively solve all speed flows including the compressible and incompressible flows.The numerical method also uses the LLF and AUSM+ methods to solve the fluxes at the surface interface. About the fluid-particles interaction, the immersed boundary (IB) method is used to simulate the flow field.

    Several problems are chosen: Shock tube problem, oblique shock reflection problem, oblique shock and boundary layer interaction, cavity flow , viscous flow past a circular cylinder, a particle drafting due to gravity force , and two particle flow. First, the numerical method is verified on several problems. Then, the numerical method coupling with the IB method is used to investigate the fluid fields of a particle drafting due to gravity force and two particle flow

    中文摘要………………………………………………Ⅰ 英文摘要………………………………………………Ⅱ 誌謝……………………………………………………Ⅲ 目錄……………………………………………………IV 圖表目錄………………………………………………VI 符號說明………………………………………………X 第一章 緒論…………………………………………1 1.1 研究目的……………………………………1 1.2 文獻回顧……………………………………2 1.3 內容大綱……………………………………4 第二章 統御方程式…………………………………5 2.1 統御方程式…………………………………5 2.2 方程式無因次化……………………………6 2.3 物理參數和相關方程式……………………7 第三章 數值方法……………………………………8 3.1 方程式離散化………………………………8 3.2 數值方法……………………………………9 3.2.1 LLF數值方法…………………………………9 3.2.2 AUSM+數值方法………………………………10 3.3 二階準確度之基本前處理法………………13 3.4 基本程式架構………………………………14 3.5 沉浸邊界法…………………………………15 3.6 邊界條件……………………………………17 第四章 程式驗證……………………………………19 4.1 震波管………………………………………19 4.2 斜震波反射問題……………………………22 4.3 斜震波與邊界層的交互作用………………23 4.4 空穴流………………………………………24 4.5 流體流經圓柱問題…………………………25 第五章 結果與討論…………………………………28 5.1 單一粒子於流體內的墜落運動……………29 5.2 兩顆粒子於流體內的墜落運動……………30 第六章 結論…………………………………………33 參考文獻………………………………………………35 圖………………………………………………………38 表………………………………………………………77 自述……………………………………………………78

    1.R. I. Issa and M. H. Javareshkian, “Pressure Based Compressible Calculation Method Utilizing Total Variation Diminishing Scheme,” AIAA Journal,Vol.36, pp.1652-1657,1998

    2.F. Moukalled and M. Darwash, “A High-Resolution Pressured-Based Algorithm for Fluid Flow at All Speeds,” Journal of Computational Physics,Vol.168, pp.101-133,2001

    3.E. Turkel ,“Preconditioning Techniques in Computational Fluid Dynamics,” Annu. Rev. Fluid Mech.Vol.31,pp.385-416,1999

    4.F. Xiao ,“Unified Formulation for Compressible and Incompressible Flows by Using Multi-Integrated Moments I: One Dimensional Inviscid Compressible Flow,”Journal of Computational Physics, Vol.195,pp.629-654,2004

    5.S.Y. Kadioglu, M. Sussman, and S. Osher, “A Second Order Primitive Preconditioner for Solving All Speed Multi-phase Flows,” Journal of Computational Physics,Vol.209,pp.477-503,2005

    6.C.S. Peskin , “Numerical Analysis of Blood Flow in the Heart,” Journal of Computational Physics,Vol.25,pp.220-252,1977

    7.K. Höfler and S. Schwaryer,“Navier-Stokes Simulation with Constraint Forces : Finite-Difference Method for Patrcle-Laden Flows and Complex Geometries,” Physical Review E , Vol. 61, pp.7146-7160,2000

    8.R.Glowinski, T.W. Pan, T.I. Hesla ,D.D. Joseph, “A Ficitious Domain Approach to the Direc Numerical Simulation of Incompressible Viscous Flows Past Moving Rigid Bodies : Application to Particulate Flow,” Journal of Computational Physics,Vol.169,pp.363-426,2001

    9.Z.G. Feng and E.E. Michaelides, “The Immersed Boundary-Lattice Boltzmann Method for Solving Fluid-Particles Interaction Problems,”Journal of Computational Physics,Vol.195,pp.602-628, 2004

    10.P. D. Lax, “Weak Solutions of Nonlinear Hyperbolic Equations and their Numerical Computation,” Comm. Pure Appl. Math.Vol.7,159, 1954

    11.K.O. Friedrich, “Symmetric Hyperbolic Linear Differential Equations,”Comm. Pure Appl. Math.Vol.7,345,1954

    12.M.S. Liou and C.J. Steffen,Jr. ,“A New Flux Splitting Scheme, ” Journal of Computational Physics,Vol.107,pp.23-39,1993

    13.M.S. Liou, “A Sequel to AUSM :AUSM+,” Journal of computational physics,Vol.129, pp.364-382,1996

    14.R. Radespiel and N. Kroll, “ Accurate Flux Vector Splitting for Shocks and Shear Layers,” Journal of computational physics, Vol.121,pp.66-78,1995

    15.B. van Leer, “Flux-Vector Splitting for Euler Equations,” In lecture Notes in physics , Vol.170,pp.507, Springer-Verlag,NewYork/Berlin,
    1982

    16.G. A. Sod, “A Survey of Several Finite Difference Methods for Systems of Nonlinear Conservation Laws,” Journal of Computational Physics,Vol.27, pp.1-31,1978

    17.S. Y. Lin and T. M. Wu, “An adaptive multi-grid finite-volume scheme for incompressible Navier-Stokes equation,” International Journal of Numerical Methods in Fluids, Vol.17,pp. 687-710,1993

    18.吳村木,“以有限體積法探討流經圓柱渦漩曳放的壓抑現象,”成功大學航空太空研究所博士論文

    19.X.Y. He and G. Doolen, “Lattice Boltzmann Mehtod on Curvilinear Coordinates System : Flow Around a Circular Cylinder,” Journal of Computational Physics,Vol.134,pp.306-315 , 1997

    20.A.L.F. Lima E Silva , A. Silveira-Neto,and J.J.R. Damasceno, “Numerical Simulation of Two-Dimensional Flows over a Circular Cylinder Using the Immersed Boundary Method,” Journal of Computational Physics,Vol.189, pp.351-370,2003

    21.T. J. Chung , “Computational fluid dynamics,” Cambridge University Press,2002.New York

    22.S.Y. Lin and Y.S. Chin, “Discontinuous Galerkin Finite Element Method for Euler and Navier-Stokes Equations,” AIAA Journal,Vol.31,No.11, pp.2016-2026,1993

    23.S.Y. Lin and Y.S. Chin, “Comparison of Higher Resolution Euler Schemes for Aeroacoustic Computations,”(to apper in AIAA Journal)

    下載圖示 校內:立即公開
    校外:2006-07-05公開
    QR CODE