簡易檢索 / 詳目顯示

研究生: 許卜袁
Hsu, Pu-Yuan
論文名稱: 可溶液式高介電常數鋯鈦酸鋇絕緣層之五環素薄膜電晶體利用F4-TCNQ為插入層提升載子濃度與增加注入效率
Pentacene-based Thin Film Transistors with Barium Zirconate Titanate Insulator Using F4-TCNQ as Inserting layer for Improving Carrier Concentration and Injection
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 85
中文關鍵詞: F4-TCNQ鋯鈦酸鋇有機薄膜電晶體插入層拉電子基團接觸阻抗載子濃度臨界電壓
外文關鍵詞: F4-TCNQ, barium zirconate titanate, organic thin film transistors, insertied layer, electron-withdrawing group, contact resistance, carrier concentration, threshold voltage
相關次數: 點閱:171下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,以具有強拉電子基團-氟之F4-TCNQ放置在汲/源極與有機半導體層之間做為插入層;並使用高介電常數溶液式鋯鈦酸鋇材料應用在有機薄膜電晶體之絕緣層;成功製作出低閘極操作偏壓(<-5 V),並由實驗中發現F4-TCNQ插入層的最佳化厚度為1 nm,有效達到提升載子移動率(從9 cm2V-1s-1增加至11.27 cm2V-1s-1),並改善臨界電壓(從-1.5 V 至-1.05 V),對於接觸阻抗也有明顯的改善(從44 kΩ降低至29.58 kΩ),使有機薄膜電晶體即使操作在低電場下也能擁有較低接觸阻抗。並由原子力顯微鏡量測得知在插入1 nm F4-TCNQ有最佳的平坦度。隨著插入層的厚度增加,臨界電壓有往正電壓偏移的趨勢。因此,設計MIS結構進行C-V量測來觀察不同厚度的插入層對電容量測的影響,進而推算有機主動層的載子濃度變化,並探討載子濃度與臨界電壓之間的關係。本研究已經成功利用有機材料做為插入層,且有效提升有機薄膜電晶體元件特性,並探討載子濃度與臨界電壓之關係,對於有機電子的研究有所助益。

    In this study, F4-TCNQ containing a strong electron-withdrawing group as an inserted layer between the drain/source electrode and organic semiconductor and a highly dielectric barium zirconate titanate solution as insulator were applied to organic thin-film transistors (OTFTs). OTFTs operating at a low gate voltage (< -5 V) were fabricated successfully. The optimum thickness of the inserted F4-TCNQ layer was 1 nm. The performance of OTFTs was improved: carrier mobility increased from 9.00 cm2V-1s-1 to 11.27 cm2V-1s-1, threshold voltage shifted from -1.50 V to -1.05 V, and contact resistance decreased from 44.00 kΩ to 29.58 kΩ. The OTFTs exhibited low contact resistance even when operating at a low electric field. Meanwhile, atomic force microscopy revealed that a thickness of 1 nm was the optimum flatness for F4-TCNQ. However, the shift in threshold voltage depended on the increasing thickness of F4-TCNQ. To explain this phenomenon, an MIS structure was used for measuring the capacitance of the inserted F4-TCNQ layers of different thicknesses. In the C-V measurement, carrier concentration in the organic semiconductor layer with different thicknesses of inserted F4-TCNQ layers was calculated. The relationship between carrier concentration and threshold voltage was also examined.
    In sum, this study used an organic material as an inserted layer to further enhance OTFT performance. The study also explored the relationship between carrier concentration and threshold voltage to advance organic electronics.

    Abstract Ⅰ 摘要 Ⅲ 誌謝 Ⅴ 目錄 VII 表目錄 Ⅹ 圖目錄 XI 第一章 序論 1 1.1 前言 1 1.2 有機薄膜電晶體起源 1 1.3 有機薄膜電晶體之優勢 2 1.4 有機薄膜電晶體之發展與趨勢 3 1.5 研究背景與動機 3 第二章 有機半導體 8 2-1 有機半導體的傳輸機制 8 2-2 有機薄膜電晶體的基本結構 9 2-3 有機薄膜電晶體操作原理 9 2-3-1 有機薄膜電晶體 9 2-3-2 載子移動率 10 2-3-3 臨界電壓 11 2-3-4 電流開關比 12 2-3-5 次臨界電壓擺幅 12 2-4 有機薄膜電晶體操作原理 13 第三章 實驗設備與製程流程 19 3-1 實驗設備 19 3-1-1 物理氣相沉積儀 19 3-1-2 熱蒸著機 20 3-1-3 旋轉塗佈機 20 3-2 實驗材料 21 3-2-1 材料特性簡介 21 3-2-2 有機主動層材料 23 3-2-3 有機插入層材料 24 3-3 實驗流程 24 3-3-1 玻璃基板清洗 25 3-3-2 閘極電極製作 25 3-3-3 絕緣層製作 26 3-3-5 有機主動層製作 27 3-3-6 插入層制作 27 3-3-7 汲/源極電極製作 28 3-4量測儀器 28 3-4-1 半導體裝置分析儀 28 3-4-2 原子力顯微鏡 29 第四章 結果與討論 43 4-1 I-V量測 43 4-1-1 無插入層的有機薄膜電晶體特性 43 4-1-2 插入0.5 nm F4-TCNQ有機薄膜電晶體特性 43 4-1-3 插入1 nm F4-TCNQ有機薄膜電晶體特性 44 4-1-4 插入3 nm F4-TCNQ有機薄膜電晶體特性 44 4-1-5 插入5 nm F4-TCNQ有機薄膜電晶體特性 45 4-1-6 總結 45 4-2 TLM分析 46 4-2-1 無插入層的有機薄膜電晶體TLM 46 4-2-2 插入0.5 nm F4-TCNQ有機薄膜電晶體TLM 47 4-2-3 插入1 nm F4-TCNQ有機薄膜電晶體TLM 47 4-2-4 插入3 nm F4-TCNQ有機薄膜電晶體TLM 47 4-2-5 插入5 nm F4-TCNQ有機薄膜電晶體TLM 48 4-2-6 總結 48 4-3 AFM分析 49 4-4 C-V量測 49 4-4-1 無插入層MIS C-V量測 51 4-4-2 插入0.5 nm F4-TCNQ MIS C-V量測 51 4-4-3 插入1 nm F4-TCNQ MIS C-V量測 52 4-4-4 插入3 nm F4-TCNQ MIS C-V量測 52 4-4-5 插入5 nm F4-TCNQ MIS C-V量測 52 4-2-6 總結 53 第五章 結論與未來展望 79 5-1 結論 79 5-2 未來展望 80 參考文獻 81

    [1]D. Braga, N. C. Erickson, M. J. Renn, R. J. Holmes, and C. D.Frisbie, “High-Transconductance Organic Thin-Film Electrochemical Transistors for Driving Low-Voltage Red-Green-Blue Active Matrix Organic Light-Emitting Devices”, Adv. Funct. Mater., vol. 22, p. 1623, 2012
    [2]H. U. Khan, M. E. Roberts, O. Johnson, W. Knoll, Z. Bao, “The effect of pH and DNA concentration on organic thin-film transistor biosensors”, Org. Electron., vol. 13, p. 519, 2012
    [3]G. H. Gelinck, H. E. A. Huitema, E. V. Veenendaal, E. Cantatore, L. Schrijnemakers, J. B. P. H. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B.H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens and D. M. de Leeuw, “Flexible active-matrix displays and shift registers based on solution-processed organic transistors”, Nat Mater., vol. 3, p. 106, 2004
    [4]E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, ” A 13.56-MHz RFID System Based on Organic Transponders”, IEEE J. Solid-St. Circ., vol. 42, p. 84, 2007.
    [5]H. Naarmann, ”Polymers, Electrically Conducting”, Ullmann's Encyclopedia of Industrial Chemistry, vol. 29, p. 297, 2000.
    [6]H. Koezuka, A. Tsumura and T. Ando” Field-Effect Transistor with Polythiophene Thin Film”, Synthetic Met. , vol. 18, p. 699, 1987.
    [7]S, K, Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, ”High mobility solution processed 6,13-bis(triisopropyl-silylethynyl) pentacene organic thin film transistors”, Appl.Phys. Lett., vol. 91, p. 063514, 2007.
    [8]C. G. Choi, B. S. Bae, ” Organic-inorganic hybrid materials as solution processible gate insulator for organic thin film transistors”, Org. Electron., vol. 8, p. 743, 2007.
    [9]P. G. Taylor, J. K. Lee, A. A. Zakhidov, M. Chatzichristidi, H. H. Fong, J. A. DeFranco, G. G. Malliaras, and C. K. Ober, ”Orthogonal Patterning of PEDOT:PSS for Organic Electronics using Hydrofluoroether Solvents”, Adv. Mater., vol. 21, p. 2314, 2009.
    [10]C. Kim, A. Facchetti and T. J. Marks, ”Gate Dielectric Microstructural Control of Pentacene Film Growth Mode and Field-Effect Transistor Performance”, Adv. Mater., vol. 19, p. 2561, 2007.
    [11]S. Chung, J. Jang, J. Cho, C. Lee, S. K. Kwon, and Y. Hong, ”All-Inkjet-Printed Organic Thin-Film Transistors with Silver Gate, Source/Drain Electrodes”, Jpn. J. Appl. Phys., vol. 50, p. 03CB05, 2011.
    [12]J. H. Kim, Q. Sun and S. Seo, ”Pressure dependent current-controllable devices based on organic thin film transistors by soft-contact lamination”, Org. Electron., vol. 11, p. 964, 2010.
    [13]J. Jo, J. S. Yu, T. M. Lee, and D. S. Kim, ”Fabrication of Printed Organic Thin-Film Transistors Using Roll Printing”, Jpn. J. Appl. Phys., vol. 48, p. 04C181, 2009.
    [14]O. D. Jurchescu, M. Popinciuc, B. J. van Wees, and T. T. M. Palstra, ”Interface-Controlled, High-Mobility Organic Transistors”, Adv. Mater., vol. 19, p. 688, 2007.
    [15]K. Myny, M. J. Beenhakkers, N. A. J. M. van Aerle, G. H. Gelinck, J. Genoe, W. Dehaene and P. Heremans, ”Unipolar Organic Transistor Circuits Made Robust by Dual-Gate Technology”, IEEE J. Solid-St. Circ., vol. 46, p. 1223, 2011.
    [16]H. U. Khan, M. E. Roberts, O. Johnson, W. Knoll and Z. Bao, ”The effect of pH and DNA concentration on organic thin-film transistor biosensors”, Org. Electron., vol. 13, p. 519, 2012.
    [17]H. W. Zan, W. W. Tsai, Y. R. Lo, Y. M. Wu and Y. S. Yang, ”Pentacene-Based Organic Thin Film Transistors for Ammonia Sensing”, IEEE Sens. J., vol. 12, p. 594, 2012.
    [18]J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing and P. Drzaic, “Paper-like electronic displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks” P.N.A.S., vol. 98, p. 4835, 2001.
    [19]R. Mondal, N. Miyaki, H. A. Becerril J. E. Norton, J. Parmer, A. C. Mayer, M. L. Tang, J. L. Brédas, M. D. McGehee and Z. Bao, “Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications” Chem. Mater., vol. 21, p. 3618, 2009.
    [20]N. Koch, J. Ghijsen, R Ruiz, J. Pflaum, R. L. Johnson, J. J. Pireaux, J. Schwartz and A. Kahn, “Interaction and Energy Level Alignment at Interfaces between Pentacene and Low Work Function Metals”, Mat. Res. Soc., vol. 708, p. 9, 2002.
    [21]P. G. Schroeder, C. B. France, J. B. Park, and B. A. Parkinson, “Orbital Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2 Studied Using Photoemission Spectroscopy”, J. Phys. Chem. B, vol. 107, p. 2253, 2003.
    [22]H. Li, Y. Duan, V. Coropceanu, J. L. Bredas, “Electronic structure of the pentacene–gold interface: A density-functional theory study”, Org. Electron., vol. 10, p. 1571, 2009.
    [23]D. E. Eastman, “Photoelectric Work Functions of Transition, Rare-Earth, and Noble Metals”, Phys. Rev. B, vol. 2, p. 1, 1970.
    [24]G. V. Hansson and S. A. Flodström, “Photoennssion study of the bulk and surface electronic structure of single crystals of gold”, Phys. Rev. B, vol. 18, p. 1572, 1978.
    [25]H. B. Michaelson, “The work function of the elements and its periodicity”, J. Appl. Phys., vol. 48, p. 4729, 1977.
    [26]N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., vol. 80, p. 4384, 2002.
    [27]N. Koch, A. Elschner, J. Schwartz, and A. Kahn, “Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current-voltage characteristics”, Appl. Phys. Lett., vol. 82, p. 2281, 2003.
    [28]N. J. Watkins and Y. Gao, “Vacuum level alignment of pentacene on LiF/Au”, J. Appl. Phys., vol. 94, p. 1289, 2003.
    [29]N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux and J. Schwartz, “Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism”, Appl. Phys. Lett., vol. 82, p. 70, 2003.
    [30]N. Kawasaki, Y. Ohta, Y. Kubozono, and A. Fujiwara, “Hole-injection barrier in pentacene field-effect transistor with Au electrodes modified by C16H33SH”, Appl. Phys. Lett., vol. 91, p. 123518, 2007.
    [31]Y. J. Lin, Y. C. Li, T. C. Wen, L. M. Huang, Y. K. Chen, “Improvement of transparent organic thin film transistor performance by inserting a lithium fluoride buffer layer”, Appl. Phys. Lett., vol. 93, p. 043305, 2008.
    [32]J. Li, X. W. Zhang, L. Zhang, K. U. Haq, X. Y. Jiang, W. Q. Zhu and Z. L. Zhang, “Performance enhancement of organic thin-film transistors using WO3-modified drain/source electrodes”, Semicond. Sci. Technol., vol. 24, p. 115012, 2009.
    [33]C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya and Y. Yang, “High-performance organic thin-film transistors with metal oxide/metal bilayer electrode”, Appl. Phys. Lett., vol. 87, p. 193508, 2005.
    [34]X. Yu, J. Yu, J. Zhou, J. Huang and Y. Jiang, “Hole mobility enhancement of pentacene organic field-effect transistors using 4,4’,4”-tris[3-methylphenyl(phenyl)amino] triphenylamine as a hole injection interlayer”, Appl. Phys. Lett., vol. 99, p. 063306, 2011.
    [35]A. T. Lithoxoidou and E. G. Bakalbassis, “PCM Study of the Solvent and Substituent Effects on the Conformers, Intramolecular Hydrogen Bonds and Bond Dissociation Enthalpies of 2-Substituted Phenols”, J. Phys. Chem. A, vol. 109, p. 366, 2005.
    [36]H. Ishii, K. Sugiyama, E. Ito and K. Seki, “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Adv. Mater., vol. 11, p. 605, 1999.
    [37]Y. Abe, T. Hasegawa, Y. Takahashi, T. Yamada and Y. Tokura, “Control of threshold voltage in pentacene thin-film transistors using carrier doping at the charge-transfer interface with organic acceptors”, Appl. Phys. Lett., vol. 87, p. 153506, 2005.
    [38]Y. Wakatsuki, K. Noda, Y. Wada, T. Toyabe and K. Matsushige, “Molecular doping effect in bottom-gate, bottom-contact pentacene thin-film transistors”, J. Appl. Phys., vol. 110, p. 054505, 2011.
    [39]H. Shirakawa, E. J. LOUIS, A. G. MacDiarmid, C. K. Chiang and A. Heeger, “Synthesis of Electrically Conducting Organic Polymers : Halogen Derivatives of Polyacetylene, (CH)x”, J.C.S. Chem. Comm., p. 578, 1977.
    [40]W. Brutting, ”Physics of Organic Semiconductors”, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005
    [41]J. Hirsch, “Hopping transport in disordered aromatic solids : a re-interpretation of mobility measurements on PKV and TNF”, J. Phys. C: Solid State Phys., vol. 12, p. 321, 1978.
    [42]V. I. Arkhipov, “Effective transport energy versus the energy of most probable jumps in disordered hopping systems”, Phys. Rev. B, vol. 64, p. 125125, 2001.
    [43]K. D. Jung, Y. C. Kim, H. Shin, B. G. Park and J. D. Lee, “A study on the carrier injection mechanism of the bottom-contact pentacene thin film transistor”, Appl. Phys. Lett., vol. 96, p. 103305, 2010.
    [44]G. Horowitz, ”Organic Field-Effect Transistors”, Adv. Mater., vol. 10, p. 365, 1998.
    [45]S. M. Sze, “Semiconductor Devices-Physics and Technology”, Wiley, New York, 1981.
    [46]W. Chen, D. Qi, X. Gao and A. T. S. Wee, “Surface transfer doping of semiconductors”, Prog. Surf. Sci., vol. 84, p. 279, 2009.
    [47]A. R. Brown, D. M. de Leeuw, E. J. Lous and E. E. Havinga, ” Organic n-type field-effect transistor”, Synthetic Met., vol. 66, p. 257, 1994.
    [48]A. R. McGhie, A. F. Garito and A. J. Heeger, “A GRADIENT SUBLIMER FOR PURIFICATION AND CRYSTAL GROWTH OF ORGANIC DONOR AND ACCEPTOR MOLECULES”, J. Cryst. Growth, vol. 22, p. 295, 1974.
    [49]R. Ruiz, B. Nickel, N. Koch, L. C. Feldman, R. F. Haglund, A. Kahn and G. Scoles, “Pentacene ultrathin film formation on reduced and oxidized Si surfaces”, Phys. Rev. B, vol. 67, p. 125406, 2003.
    [50]J. Hwang and A. Kahn, “Electrical doping of poly(9,9-dioctylfluorenyl-2,7-diyl) with tetrafluorotetracyanoquinodimethane by solution method”, J. Appl. Phys., vol. 97, p. 103705, 2005.
    [51]G. Bing and C. F. Quate, “Atomic Force Microscope”, Phys. Rev. Lett., vol. 56, p. 930, 1986.

    下載圖示 校內:2018-04-09公開
    校外:2018-04-09公開
    QR CODE