| 研究生: |
蘇聖晏 Su, Sheng-Yan |
|---|---|
| 論文名稱: |
使用牛頓法對特定結構計算最近半正定矩陣 Newton method for computing the nearest positive semidefinite matrices with the prescribed structure |
| 指導教授: |
林敏雄
Lin, Matthew M. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 牛頓法 、相關矩陣 、半正定矩陣 |
| 外文關鍵詞: | Newton method, correlation matrix, positive semidefinite matrix |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
給定一個對稱矩陣,我們在這篇論文中想要用兩種結構來近似這個對稱矩陣。第一種是對角元素與原始對稱矩陣相同的半正定矩陣,另一種是從原始矩陣的非對角線元素中固定特定位置的相關矩陣。我們的方法是將原始近似問題轉化為無約束的連續可微凸優化問題,並且數值結果也顯示出了這個方法的可行性及效率。
Given a symmetric matrix, we in this work would like to approximate this symmetric matrix with two kinds of structure, i.e., a positive semidefinite matrix with fixed diagonal entries selected from the original symmetric matrix and a correlation matrix with fixed elements outside the diagonal entries. Our approach is to transform the original approximate problem into an unconstrained continuously differentiable convex optimization problem. Numerical experiments seem to suggest the efficiency and effectiveness of our method.
[1] Rajendra Bhatia. Matrix analysis. Vol. 169. Graduate Texts in Mathematics.Springer-Verlag, New York, 1997, pp. xii+347.isbn: 0-387-94846-5.doi:10.1007/978-1-4612-0653-8.url:https://doi.org/10.1007/978-1-4612-0653-8.
[2] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, Cambridge, 2004, pp. xiv+716.isbn: 0-521-83378-7.doi:10.1017/CBO9780511804441.url:https://doi.org/10.1017/CBO9780511804441.
[3] Xin Chen, Houduo Qi, and Paul Tseng. “Analysis of nonsmooth symmetricmatrix-valued functions with applications to semidefinite complementarity problems”. In: SIAM J. Optim. 13.4 (2003), pp. 960–985.issn: 1052-6234.doi:10.1137/S1052623400380584.url:https://doi.org/10.1137/S1052623400380584.
[4] Charles K. Chui, Frank Deutsch, and Joseph D. Ward. “Constrained best approximation in Hilbert space”. In: Constr. Approx. 6.1 (1990), pp. 35–64. issn: 0176-4276.doi:10.1007/BF01891408.url:https://doi.org/10.1007/BF01891408.
[5] Frank H. Clarke. Optimization and nonsmooth analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983, pp. xiii+308. isbn:0-471-87504-X.
[6] Frank Deutsch, Wu Li, and Joseph D. Ward. “A dual approach to constrained interpolation from a convex subset of Hilbert space”. In: J. Approx. Theory 90.3 (1997), pp. 385–414. issn: 0021-9045.doi:10.1006/jath.1996.3082.url:https://doi.org/10.1006/jath.1996.3082.
[7] Francisco Facchinei. “Minimization of SC1 functions and the Maratos effect”.In:Oper. Res. Lett.17.3 (1995), pp. 131–137.issn: 0167-6377.doi:10.1016/0167-6377(94)00059-F.url:https://doi.org/10.1016/0167-6377(94)00059-F.
[8] Nicholas J. Higham. “Computing a nearest symmetric positive semidefinite matrix”. In: Linear Algebra Appl. 103 (1988), pp. 103–118. issn: 0024-3795.doi:10.1016/0024-3795(88)90223-6.url:https://doi.org/10.1016/0024-3795(88)90223-6.
[9] Jerome Malick. “A dual approach to semidefinite least-squares problems”.In:SIAM J. Matrix Anal. Appl.26.1 (2004), pp. 272–284.issn: 0895-4798. doi: 10.1137/S0895479802413856. url: https://doi.org/10.1137/S0895479802413856.
[10] Robert Mifflin. “Semismooth and semiconvex functions in constrained optimization”. In: SIAM J. Control Optimization 15.6 (1977), pp. 959–972. issn:0363-0129.doi:10 . 1137 / 0315061.url:https : / / doi . org / 10 . 1137 /0315061.
[11] Houduo Qi and Defeng Sun. “A quadratically convergent Newton method for computing the nearest correlation matrix”. In: SIAM J. Matrix Anal. Appl.28.2 (2006), pp. 360–385. issn: 0895-4798.doi:10.1137/050624509.url:https://doi.org/10.1137/050624509.
[12] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis. Vol. 317. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998, pp. xiv+733. isbn: 3-540-62772-3.doi:10.1007/978-3-642-02431-3.url:https://doi.org/10.1007/978-3-642-02431-3.
[13] Defeng Sun and Jie Sun. “Semismooth matrix-valued functions”. In: Math. Oper. Res. 27.1 (2002), pp. 150–169. issn: 0364-765X.doi:10.1287/moor.27.1.150.342.url:https://doi.org/10.1287/moor.27.1.150.342.
校內:2025-07-01公開