簡易檢索 / 詳目顯示

研究生: 蕭德慶
Hsiao, Te-Ching
論文名稱: 雙跨距圓柱薄殼之振動分析
Vibration Analysis of Two-Span Thin Cylindrical Shells
指導教授: 趙隆山
Chao, Long-Sun
王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 87
中文關鍵詞: 圓柱薄殼
外文關鍵詞: Thin Cylindrical Shells
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於薄殼結構承受動態負載日漸增加,因此在探討圓柱形殼之振動問題已逐漸普遍。本文首先由建立單一跨距圓柱薄殼結構之應力場、應變場與位移場之關係,從而推導圓柱薄殼結構的運動方程式,而後再利用轉換矩陣法計算分析圓柱薄殼結構自由振動之模態頻率與相對應之模態形狀函數,並證明模態形狀函數之正交性質以確定模態法分析結構動態行為之可行性,最後再探討幾何參數對結構模態頻率之影響。
      由於薄殼結構幾何性質的特殊,因此運動的數學模式應考慮各方向之剪切變形效應、轉動慣量效應與軸向慣量效應,如此方能推導得完整之薄殼運動方程式。
      另一個主題為分析具有外加強環之雙跨距圓柱薄殼結構,探討跨距數及加強環之厚度效應、寬度效應對結構自由振動之影響與結構承受等速移動負載之動態響應行為。同樣的先建立整個殼-環結構之應力場、應變場與位移場之關係,從而推導整個結構的運動方程式,而後再利用轉換矩陣法計算分析具有外加強環圓柱薄殼結構自由振動之模態頻率與相對應之模態形狀函數,並證明模態形狀函數之正交性質。接著利用模態法推導結構承受等速移動集中負載的模態振幅控制方程式,以求得整個結構的動態響應。

    none

    摘要 ……………………………………………………………………… I 誌謝 ……………………………………………………………………… II 目錄 ……………………………………………………………………… Ⅲ 表目錄 …………………………………………………………………… Ⅴ 圖目錄 …………………………………………………………………… Ⅵ 符號說明 ………………………………………………………………… Ⅷ 第一章 緒論 …………………………………………………………… 1 §1-1 前言 ……………………………………………………………… 1 §1-2 文獻回顧 ………………………………………………………… 2 §1-3 研究範圍 ………………………………………………………… 4 第二章 圓柱薄殼之自由振動分析……………………………………… 6 §2-1 變形與運動方程式 ……………………………………………… 6 §2-2 圓柱薄殼之自由振動 …………………………………………… 9 §2-3 模態頻率與模態形狀函數之計算 ……………………………… 16 §2-4 模態形狀函數之正交性 ………………………………………… 16 §2-5 實例說明與討論 ………………………………………………… 21 第三章 雙跨距圓柱薄殼之自由振動分析……………………………… 32 §3-1 變形與運動方程式 ……………………………………………… 32 §3-2 圓柱薄殼之自由振動 …………………………………………… 39 §3-3 模態頻率與模態形狀函數之計算 ……………………………… 49 §3-4 模態形狀函數之正交性 ………………………………………… 51 §3-5 實例說明與討論 ………………………………………………… 53 第四章 雙跨距圓柱薄殼承受移動負載之動態分析 ………………… 66 §4-1 強迫振動 ………………………………………………………… 66 §4-2 徑向等速移動集中負載 ………………………………………… 68 §4-3 例題與討論 ……………………………………………………… 70 第五章 結論與建議 …………………………………………………… 74 §5-1 結論 ……………………………………………………………… 74 §5-2 建議 ……………………………………………………………… 75 參考文獻 ………………………………………………………………… 76 附錄A …………………………………………………………………… 80 附錄B …………………………………………………………………… 82 附錄C …………………………………………………………………… 85

    1. A. E. H. Love, ” On the small free vibrations and deformations of a thin elastic shell “, Philosophical Transactions of the Royal Soc.of London, Ser. A, 179, pp.491-546,1888.
    2. W. Flügge, “ Stresses in Shells “, 2nd ed., Springer-Verlag, New York, 1973.
    3. M. L. Baron, “ Circular symmetric vibrations of infinitely long cylindrical shells with equidistant stiffeners ”, Journal of Applied Mechanics 23, pp.316-318, 1958.
    4. H. H. Bleich., ” Approximate determination of the frequencies of ring stiffened cylindrical shell “, Osterreichisches Ingenieur-Archiv 15, 1-4. 1961.
    5. Yu-Yi-Yuan.,”Free Vibration of Thin Cylindrical shells Having Finite longth with Freely Supported and Clamped Edges,” J.ASME. pp. 547-552,1955.
    6. Kevin.Forsberg.,” Influence of boundary conditions on the modal characteristics of thin cylindrical Shells. ” American Institute of Aeronautics and Astronautics Journal Vol. 2,pp. 2150-2157,1964.
    7. Kevin.Forsberg., ”Axisymmetric and beam-type vibrations of thin cylindrical Shells. ” American Institute of Aeronautics and Astronautics .Journal 7, 221-227, 1969.
    8. R. Grief and H. Chung, “ Vibrations of constrained cylindrical shells. “, American Institute of Aeronautics and Astronautics Journal13(9),1190-1198, 1975.
    9. T. Koga, ” Effects of boundary conditions on the free vibrations of circular cylindrical shells.” American Institute of Aeronautics and Astronautics Journal, 26(11)1387-1394.,1988.
    10. C. B. Sharma, “ Vibration characteristics of thin circular cylinders. ” J. Sound and Vibration, 63(4), 581-592,1979
    11. B. Budiansky and J. L. Sanders, “ On the best first order linear shell theory. ” Progress in Applied Mechanics, The Prager Anniversary Volume, Vol.192, 129-140. New York: Macmillan. 1963
    12. A. W. Leissa, “Vibrations of shells.” Rep. NASA-SP-288, National Aeronautics and Space Administration, Washington, D.C.,1973
    13. T. Wah, ” Circular symmetric vibrations of ring-stiffened cylindrical shells.”, Journal of the Society of Industrial and Applied Mathematics 12, 649-662,1964
    14. T. Wah and W. C. L. Hu,” Vibration analysis of stiffened cylinders including inter-ring motion”, Journal of the Acoustical Society of America , Vol.43, No.5, pp1005-1016.,1968.
    15. T. Wah and L. R. Calcote., “ Structure Analysis by Finite Difference Calculus. ”,
    New York:Van Norstrand Reinhold Co.,1970.
    16. C. M. Wang, “ Ritz Method for Vibration Analysis of Cylindrical Shells with Ring Stiffeners”, Journal of Engineering Mechanics,February,pp134-142,1997
    17. D. E. Beskos, and J. B. Oates, “Dynamic analysis of ring-stiffened circular cylindrical shells, “ J. Sound and Vibration, Vol.75, pp.1-15,1981
    18. I. D. Wilken and W. Soedel, “ The receptance method applied to ring-stiffened cylindrical shells:analysis of modal characteristics. “, Journal of Sound and Vibration 44, 563-576. 1976.
    19. I. D. Wilken and W. Soedel, “ Simplified prediction of the modal characteristics. Of ring-stiffened cylindrical shells.“, Journal of Sound and Vibration 44,577-589. 1976.
    20. Kevin.Forsberg , ”Exact solution for natural frequencies of a ring-stiffened cylinders.”, AIAA/ASME 10th Structures, Structural Dynamics and Materials Conference, ASME Volume on Structures and Materials, pp18-30. 1969
    21. Dravin G. Bhuta.,” Transient Response of a Thin Elastic Cylindrical shell to a Moving Shock Wave” , J. Accus. Soci. Of American., Vol. 35, pp.25-30,1963.
    22. James Sheng.,” The Response of a Thin Cylindrical shell to Transient Surface Loading ”, A.I.A.A. J. Vol.3, No.4, pp.701-709, 1965.
    23. Paulo B. Goncalves and Neiva R. S. S. Ramos, Numerical Method for Vibration Analysis of Cylindrical Shells, Journal of Engineering Mechanics, June, pp 544-550, 1997
    24. A. M. J. Al-Najafi and G. B. Warburton .,” Free Vibration of Ring-Stiffened Cylindrical Shells”, Journal of Sound and Vibration, Vol. 13, No.1, pp.9-25,1970.
    25. B. A. J. Mustafa, and R. Ali, “ Prediction of natural frequency of vibration of stiffened cylindrical shells and orthogonally stiffened curved panels. ” J. Sound and Vibration, 113, 317-327. 1987
    26. N. S. Bardell and D. J. Mead, ” Free Vibration of an orthogonally stiffened cylindrical shell. Part ІІ:discrete general stiffeners.” J. Sound and Vibration, 134, 55-72. 1989
    27. J. Jiang, and M. D. Olson, “ Vibration analysis of orthogonally stiffened cylindrical shells using super finite element. ”, J. Sound and Vibration, 173, 73-83. 1994.
    28. G. D. Galletly, “ On the in-vacuo vibration of simply supported, ring-stiffened cylindrical shells. ”, Proc., 2nd U.S. Nat. Congr. Appl, Mech., Am. Soc. Mech. Engrs., New york, 225-231. 1955.
    29. C. B. Sharma and D. J. Jones, “ Vibration characteristics of a clamped-free and clamped-ring-stiffened circular cylindrical shells,” J. Sound and Vibration, 14, 459-474,1971
    30. H. Chung, “Free vibration analysis of circular cylindrical shells.” , J. Sound and Vibration, 74(3), 331-350,1981
    31. C. M. Wang., J. Tian., and S. Swaddiwudhipong., “Bucking of cylindrical shells with internal ring supports.” Struct. Engrg. And Mech.,2(4), 369-381.1994
    32. S. Swaddiwudhipong, J. Tian, C. M. Wang, “ Vibrations of cylindrical shells with intermediate supports. ” J. Sound and Vibration, 187(1), 69-93. 1995
    33. G. R. Cowper, “The Shear Coefficient in Timoshenko’s Beam Theory”, Journal of Applied Mechanics, June, pp. 335-340, 1966.
    34. 聶國禎,”簡化方法應用於圓柱形薄殼最低自然頻率解法之研究”,中正大學機械工程研究所碩士論文,1973
    35. 邱乾良,”圓筒殼之振動分析”, 清華大學動力機械研究所碩士論文,1976
    36. Irving H. Shames and Francis A.Cozzarelli, “ Elastic and Inelastic Stress Analysis “, Taylor&Francis, 1997.

    下載圖示 校內:立即公開
    校外:2002-08-30公開
    QR CODE