簡易檢索 / 詳目顯示

研究生: 鍾佳學
Chung, Chia-Hsueh
論文名稱: 隨機共聚策略對本質可拉伸與部分可降解之 N 型半導體在有機場效應電晶體性能之影響
Random Copolymer Strategy on the Performance of Intrinsically Stretchable and Partially Degradable N-Type Semiconductors for Organic Field-Effect Transistors
指導教授: 林彥丞
Lin, Yan-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 160
中文關鍵詞: 隨機共聚物可降解性可拉伸性n 型半導體共軛高分子
外文關鍵詞: Random copolymer, Degradability, Stretchability, n-type semiconductors, Conjugated polymer
相關次數: 點閱:8下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中合成了一系列共軛高分子,包括兩種均聚物(P1 和 P5)與三種隨機共聚物(P2–P4),以萘二酰亞胺(NDI)作為受體單元,並搭配兩種給體單元──噻吩–亞胺–噻吩(TIT)與噻吩–乙烯基–噻吩(TVT)──進行不同比例的共聚。TIT 的引入使高分子主鏈中包含對酸敏感的亞胺鍵,賦予材料在酸性條件下的部分可降解性,呼應永續電子材料的發展需求。結構分析顯示,TIT 有助於形成 edge-on 分子取向,而 TVT 則促進 face-on 與末端對末端(end-to-end)堆疊。紫外可見光吸收光譜(UV-vis)分析進一步指出,TVT 含量越高,聚集特徵越明顯,反映出更有序的堆疊行為。P3 的吸收紅移與聚集程度介於 P1 與 P5 之間,顯示其具中等聚集能力,有助於在電荷傳輸與機械穩定性間取得平衡。酸降解實驗亦驗證其可解聚性,P3 於酸性環境下經 48 小時降解率達30.4%,展現材料潛在的可降解特性。透過隨機共聚方式調控給體單元比例,有效調整高分子的固態堆疊行為,並平衡其電子與機械性質。其中,TIT 與 TVT 等莫耳比例的 P3 表現出適度的可拉伸性,且在應變下維持穩定的電荷遷移率。具體而言,P3 初始遷移率為 0.10 cm² V⁻¹ s⁻¹,在 20% 應變下仍保有 0.0017 cm² V⁻¹ s⁻¹ 的遷移率,對應的遷移率保持率為 31.3%,顯著高於 P5 的 12.2%。本研究顯示 TIT/TVT 隨機共聚策略可望整合電荷傳輸性、機械穩定性與可降解性,為發展環境友善之可撓性 n 型半導體材料提供具潛力的設計方向。

    In this study, a series of conjugated polymers—two homopolymers (P1 and P5) and three random copolymers (P2–P4)—were synthesized using naphthalene diimide (NDI) as the acceptor and varying ratios of two donor units: thiophene–imine–thiophene (TIT) and thiophene–vinylene–thiophene (TVT). The incorporation of TIT introduced acid-labile imine bonds into the backbone, enabling partial degradability under acidic conditions and addressing the demand for sustainable electronics. Structural analyses showed that TIT favored edge-on orientation, while TVT promoted face-on and end-to-end stacking. UV–vis spectroscopy revealed that increasing TVT content enhanced aggregation features, indicating more ordered packing. P3, with a balanced TIT/TVT ratio, exhibited intermediate redshift and shoulder peak characteristics between P1 and P5, suggesting moderate aggregation that supports a trade-off between charge transport and mechanical stability. Acid degradation tests confirmed the depolymerization ability of P3, which showed 30.4% degradation after 48 hours in acidic conditions. Random copolymerization effectively modulated solid-state packing and the balance of electronic and mechanical properties. Among the series, P3 demonstrated moderate stretchability and stable mobility under strain, with an initial mobility of 0.10 cm² V⁻¹ s⁻¹ and 0.0017 cm² V⁻¹ s⁻¹ at 20% strain, corresponding to a retention of 31.3%, significantly higher than P5’s 12.2%. These results highlight the potential of the TIT/TVT-based random copolymer strategy to integrate charge transport, mechanical robustness, and degradability for flexible, eco-friendly n-type semiconductors.

    中文摘要 ii Abstract iii 致謝 iv Contents v Lists of Figures viii Lists of Schemes xvi List of Tables xviii List of Abbreviation xix Chapter 1 Introduction 1 1-1 Conjugated Polymers 1 1-1.1 Background 1 1-1.2 Backbone Design 2 1-1.3 Side Chain Engineering 4 1-1.4 Donor–Acceptor Strategy 6 1-2 Organic Field-Effect Transistors (OFETs) 8 1-2.1 Operating Principle and Device Architectures of OFETs 8 1-2.2 Performance Requirements for Flexible/Stretchable OFETs 11 1-3 Design Strategies for Stretchable Conjugated Polymers 13 1-3.1 Biaxial Extension Strategy 13 1-3.2 Conjugation Break Spacers (CBS) 15 1-3.3 Random Copolymerization 16 1-3.4 Block Copolymerization 18 1-3.5 Rubber Blending 19 1-3.6 Hydrogen-Bonding Strategy 20 1-4 N-Type Stretchable Semiconducting Polymers 22 1-5 Environmentally Friendly & Degradable Polymers 24 1-6 Research Objectives 26 Chapter 2 Experimental Methods and Procedures 28 2-1 Overview of Experimental Workflow 28 2-2 Chemicals and Reagents 31 2-3 Polymer Synthesis Procedures 32 2-3.1 Synthesis of Alkylated Side Chains 32 2-3.2 Synthesis of NDI-Br₂ 34 2-3.3 Synthesis of TVT-Tin Monomer 36 2-3.4 Synthesis of TIT-Tin Monomer 37 2-3.5 Polymerization of P1–P5 39 2-4 Laboratory Equipment and Instrumentation 41 2-4.1 Laboratory Equipment 41 2-4.2 Experiment Instrumentation 42 2-5 OFET Fabrication and Device Architecture 55 2-6 Degradation Procedure 57 Chapter 3 Experimental Results and Discussion 58 3-1 Polymer Characterization 58 3-1.1 NMR and EA 58 3-1.2 GPC 70 3-1.3 DSC and TGA 72 3-2 DFT 73 3-3 Optical and Degradation Properties of Polymers 74 3-4 Electrochemical Properties of Polymers 77 3-5 Film Morphology and Structural Analysis 81 3-5.1 OM 81 3-5.2 AFM 83 3-5.3 GIWAXS 85 3-6 OFET Device Performance 107 Chapter 4 Conclusions and Future Work 115 4-1 Conclusions 115 4-2 Future Works 117 Appendix 119 A.1 Synthetic Route Diagram 119 A.2 Completed Synthetic Procedures 121 Reference 132

    (1) Tran, H.; Nikzad, S.; Chiong, J. A.; Schuster, N. J.; Peña-Alcántara, A. E.; Feig, V. R.; Zheng, Y.-Q.; Bao, Z. Modular Synthesis of Fully Degradable Imine-Based Semiconducting p-Type and n-Type Polymers. Chemistry of Materials 2021, 33 (18), 7465-7474.
    (2) Kim, M.; Ryu, S. U.; Park, S. A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor–Acceptor‐Conjugated Polymer for High‐Performance Organic Field‐Effect Transistors: A Progress Report. Advanced Functional Materials 2019, 30 (20), 1904545.
    (3) Huang, Y.-W.; Lin, Y.-C.; Yen, H.-C.; Chen, C.-K.; Lee, W.-Y.; Chen, W.-C.; Chueh, C.-C. High Mobility Preservation of Near Amorphous Conjugated Polymers in the Stretched States Enabled by Biaxially-Extended Conjugated Side-Chain Design. Chemistry of Materials 2020, 32 (17), 7370-7382.
    (4) Ding, L.; Yu, Z. D.; Wang, X. Y.; Yao, Z. F.; Lu, Y.; Yang, C. Y.; Wang, J. Y.; Pei, J. Polymer Semiconductors: Synthesis, Processing, and Applications. Chemical Reviews 2023, 123 (12), 7421-7497.
    (5) Zhang, Q.; Huang, J.; Wang, K.; Huang, W. Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. Advanced Materials 2022, 34 (26), e2110639.
    (6) Park, J. S.; Kim, G. U.; Lee, S.; Lee, J. W.; Li, S.; Lee, J. Y.; Kim, B. J. Material Design and Device Fabrication Strategies for Stretchable Organic Solar Cells. Advanced Materials 2022, 34 (31), 2201623.
    (7) Wu, Y.; Yuan, Y.; Sorbelli, D.; Cheng, C.; Michalek, L.; Cheng, H. W.; Jindal, V.; Zhang, S.; LeCroy, G.; Gomez, E. D.; et al. Tuning polymer-backbone coplanarity and conformational order to achieve high-performance printed all-polymer solar cells. Nature Communications 2024, 15 (1), 2170.
    (8) Liu, W.; Zhang, C.; Alessandri, R.; Diroll, B. T.; Li, Y.; Liang, H.; Fan, X.; Wang, K.; Cho, H.; Liu, Y.; et al. High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nature Materials 2023, 22 (6), 737-745.
    (9) Zhang, Z.; Wang, W.; Jiang, Y.; Wang, Y. X.; Wu, Y.; Lai, J. C.; Niu, S.; Xu, C.; Shih, C. C.; Wang, C.; et al. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature 2022, 603 (7902), 624-630.
    (10) Tseng, C. C.; Wang, K. C.; Lin, P. S.; Chang, C.; Yeh, L. L.; Tung, S. H.; Liu, C. L.; Cheng, Y. J. Intrinsically Stretchable Organic Thermoelectric Polymers Enabled by Incorporating Fused-Ring Conjugated Breakers. Small 2024, 20 (37), 2401966.
    (11) Zheng, Q.-B.; Lin, Y.-C.; Lin, Y.-T.; Chang, Y.; Wu, W.-N.; Lin, J.-M.; Tung, S.-H.; Chen, W.-C.; Liu, C.-L. Investigating the stretchability of doped poly(3-hexylthiophene)-block-poly(butyl acrylate) conjugated block copolymer thermoelectric thin films. Chemical Engineering Journal 2023, 472, 145121.
    (12)Wang, M.; Ford, M. J.; Zhou, C.; Seifrid, M.; Nguyen, T. Q.; Bazan, G. C. Linear Conjugated Polymer Backbones Improve Alignment in Nanogroove-Assisted Organic Field-Effect Transistors. Journal of the American Chemical Society 2017, 139 (48), 17624-17631.
    (13) Sui, Y.; Deng, Y.; Du, T.; Shi, Y.; Geng, Y. Design strategies of n-type conjugated polymers for organic thin-film transistors. Materials Chemistry Frontiers 2019, 3 (10), 1932-1951.
    (14) Mei, J.; Bao, Z. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chemistry of Materials 2013, 26 (1), 604-615.
    (15)Yang, Y.; Liu, Z.; Zhang, G.; Zhang, X.; Zhang, D. The Effects of Side Chains on the Charge Mobilities and Functionalities of Semiconducting Conjugated Polymers beyond Solubilities. Advanced Materials 2019, 31 (46), e1903104.
    (16) Hashemi, D.; Ma, X.; Ansari, R.; Kim, J.; Kieffer, J. Design principles for the energy level tuning in donor/acceptor conjugated polymers. Physical Chemistry Chemical Physics 2019, 21 (2), 789-799.
    (17)Griggs, S.; Marks, A.; Bristow, H.; McCulloch, I. n-Type organic semiconducting polymers: stability limitations, design considerations and applications. Journal of Materials Chemistry C 2021, 9 (26), 8099-8128.
    (18) Zheng, Y.; Zhang, S.; Tok, J. B.; Bao, Z. Molecular Design of Stretchable Polymer Semiconductors: Current Progress and Future Directions. Journal of the American Chemical Society 2022, 144 (11), 4699-4715.
    (19) Yu, X.; Chen, L.; Li, C.; Gao, C.; Xue, X.; Zhang, X.; Zhang, G.; Zhang, D. Intrinsically Stretchable Polymer Semiconductors with Good Ductility and High Charge Mobility through Reducing the Central Symmetry of the Conjugated Backbone Units. Advanced Materials 2023, 35 (17), 2209896.
    (20) Ashizawa, M.; Zheng, Y.; Tran, H.; Bao, Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Progress in Polymer Science 2020, 100, 101181.
    (21) Chen, A. X.; Kleinschmidt, A. T.; Choudhary, K.; Lipomi, D. J. Beyond Stretchability: Strength, Toughness, and Elastic Range in Semiconducting Polymers. Chemistry of Materials 2020, 32 (18), 7582-7601.
    (22) Ding, Z.; Zhao, K.; Han, Y. Strain‐induced morphology evolution and charge transport in conjugated polymer films. Interdisciplinary Materials 2024, 4 (1), 138-161
    (23) Lin, Y.-C.; Huang, Y.-W.; Wu, Y.-S.; Li, J.-S.; Yang, Y.-F.; Chen, W.-C.; Chueh, C.-C. Improving Mobility–Stretchability Properties of Polythiophene Derivatives through Ester-Substituted, Biaxially Extended Conjugated Side Chains. ACS Applied Polymer Materials 2021, 3 (3), 1628-1637.
    (24) Mun, J.; Wang, G. J. N.; Oh, J. Y.; Katsumata, T.; Lee, F. L.; Kang, J.; Wu, H. C.; Lissel, F.; Rondeau‐Gagné, S.; Tok, J. B. H.; et al. Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors. Advanced Functional Materials 2018, 28 (43), 1804222.
    (25) Wu, N.; Huang, G.; Huang, H.; Wang, Y.; Gu, X.; Wang, X.; Qiu, L. Achieving High Performance Stretchable Conjugated Polymers via Donor Structure Engineering. Macromol Rapid Commun 2023, 44 (17), e2300169.
    (26) Lin, Y. C.; Huang, Y. W.; Hung, C. C.; Chiang, Y. C.; Chen, C. K.; Hsu, L. C.; Chueh, C. C.; Chen, W. C. Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility-Stretchability Property. ACS Appl Mater Interfaces 2020, 12 (45), 50648-50659.
    (27) Mun, J.; Ochiai, Y.; Wang, W.; Zheng, Y.; Zheng, Y. Q.; Wu, H. C.; Matsuhisa, N.; Higashihara, T.; Tok, J. B.; Yun, Y.; et al. A design strategy for high mobility stretchable polymer semiconductors. Nature Communications 2021, 12 (1), 3572.
    (28) Chang, T. W.; Weng, Y. C.; Tsai, Y. T.; Jiang, Y.; Matsuhisa, N.; Shih, C. C. Chain-Kinked Design: Improving Stretchability of Polymer Semiconductors through Nonlinear Conjugated Linkers. ACS Applied Materials & Interfaces 2023, 15, 51507–51517.
    (29) Ditte, K.; Perez, J.; Chae, S.; Hambsch, M.; Al-Hussein, M.; Komber, H.; Formanek, P.; Mannsfeld, S. C. B.; Fery, A.; Kiriy, A.; et al. Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics. Advanced Materials 2021, 33 (4), 2005416.
    (30) Li, X.; Ou, X.; Chen, G.; Bi, R.; Li, Z.; Xie, Z.; Yue, W.; Guo, S. Z. Ultrasoft and High-Adhesion Block Copolymers for Neuromorphic Computing. ACS Applied Materials & Interfaces 2024, 16 (10), 12897-12906.
    (31) Pei, D.; Zhao, B.; An, C.; Guo, Y.; Zhou, K.; Deng, Y.; Han, Y.; Geng, Y. Simultaneous Enhancement in the Mechanical and Electrical Performance of Stretchable Polymer Semiconductor Blends via Miscibility Control. Macromolecules 2024, 57 (7), 3138-3147.
    (32) Zhang, F.; Sun, J.; Liu, F.; Li, J.; Hu, B. L.; Tang, Q.; Li, R. W. Intrinsically Elastic Semiconductors through Aldehyde-Amine Polycondensation and Its Application on Stretchable Transistor. ACS Applied Materials & Interfaces 2024, 16 (29), 38324-38333.
    (33) Zhang, S.; Cheng, Y. H.; Galuska, L.; Roy, A.; Lorenz, M.; Chen, B.; Luo, S.; Li, Y. T.; Hung, C. C.; Qian, Z.; et al. Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites. Advanced Functional Materials 2020, 30 (27), 2000663.
    (34) Kim, M. H.; Jeong, M. W.; Kim, J. S.; Nam, T. U.; Vo, N. T. P.; Jin, L.; Lee, T. I.; Oh, J. Y. Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors. Science Advances 2022, 8 (51), eade2988.
    (35) Wang, Y.; Chen, K. L.; Prine, N.; Rondeau‐Gagné, S.; Chiu, Y. C.; Gu, X. Stretchable and Self‐Healable Semiconductive Composites Based on Hydrogen Bonding Cross‐linked Elastomeric Matrix. Advanced Functional Materials 2023, 33 (42), 2303031.
    (36) Seo, S.; Wan, Q.; Oh, E. S.; Sheppard, S. M.; Lee, J.-W.; Lim, C.; Kim, T.-S.; Thompson, B. C.; Kim, B. J. Investigating the Effects of Hydrogen Bonding on Mechanical and Electrical Properties of n-Type Semicrystalline Polymers. Chemistry of Materials 2024, 36 (15), 7541-7551.
    (37) Yamamoto, S.; Matsuda, M.; Lin, C.-Y.; Enomoto, K.; Lin, Y.-C.; Chen, W.-C.; Higashihara, T. Intrinsically Stretchable Block Copolymer Composed of Polyisobutene and Naphthalenediimide–Bithiophene-Based π-Conjugated Polymer Segments for Field-Effect Transistors. ACS Applied Polymer Materials 2022, 4 (12), 8942-8951.
    (38) Matsuda, M.; Lin, C. Y.; Sung, C. Y.; Lin, Y. C.; Chen, W. C.; Higashihara, T. Unraveling the Effect of Stereoisomerism on Mobility-Stretchability Properties of n-Type Semiconducting Polymers with Biobased Epimers as Conjugation Break Spacers. ACS Applied Materials & Interfaces 2023,15 (44), 51492-51506.
    (39) Chiong, J. A.; Zheng, Y.; Zhang, S.; Ma, G.; Wu, Y.; Ngaruka, G.; Lin, Y.; Gu, X.; Bao, Z. Impact of Molecular Design on Degradation Lifetimes of Degradable Imine-Based Semiconducting Polymers.Journal of the American Chemical Society 2022, 144 (8), 3717-3726.
    (40) Uva, A.; Lin, A.; Tran, H. Biobased, Degradable, and Conjugated Poly(Azomethine)s. Journal of the American Chemical Society 2023, 145 (6), 3606-3614.
    (41) Chung, C. H.; Huang, Y. C.; Su, S. W.; Su, C. J.; Jeng, U. S.; Chen, J. Y.; Lin, Y. C. Partially Degradable N-Type Conjugated Random Copolymers for Intrinsically Stretchable Organic Field-Effect Transistors. Macromolecular Rapid Communications 2025, 46 (9), e2401057.
    (42) Guo, X.; Watson, M. D. Conjugated polymers from naphthalene bisimide. Organic Letters 2008, 10 (23), 5333-5336.
    (43) Thompson, A. C.; Grimm, H. M.; Gray Bé, A.; McKnight, K. J.; Reczek, J. J. Efficient bromination of naphthalene dianhydride and microwave-assisted synthesis of core-brominated naphthalene diimides. Synthetic Communications 2015, 45 (9), 1127-1136.
    (44) Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y. Highly pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Advanced Materials 2012, 24 (34), 4618-4622.
    (45)Peng, S.-H.; Tu, W.-Y.; Gollavelli, G.; Hsu, C.-S. Synthesis of diketopyrrolopyrrole based conjugated polymers containing thieno[3,2-b]thiophene flanking groups for high performance thin film transistors. Polymer Chemistry 2017, 8 (22), 3431-3437.
    (46) Wu, W. R., Jeng, U. S., Su, C. J., Wei, K. H., Su, M. S., Chiu, M. Y., ... & Su, A. C. Competition between fullerene aggregation and poly (3-hexylthiophene) crystallization upon annealing of bulk heterojunction solar cells. ACS Nano 2011, 5(8), 6233-6243.
    (47) Chen, P. H.; Shimizu, H.; Matsuda, M.; Higashihara, T.; Lin, Y. C. Improved Mobility-Stretchability Properties of Diketopyrrolopyrrole-Based Conjugated Polymers with Diastereomeric Conjugation Break Spacers. Macromolecular Rapid Communications 2024, 45 (16), e2400331.e2400331.
    (48) Chabinyc, M. L., Toney, M. F., Kline, R. J., McCulloch, I., & Heeney, M. X-ray scattering study of thin films of poly (2, 5-bis (3-alkylthiophen-2-yl) thieno [3, 2-b] thiophene). Journal of the American Chemical Society 2007, 129 (11), 3226-3237.
    (49)Rivnay, J.; Toney, M. F.; Zheng, Y.; Kauvar, I. V.; Chen, Z.; Wagner, V.; Facchetti, A.; Salleo, A. Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. Advanced Materials 2010, 22 (39), 4359-4363.
    (50) Rivnay, J.; Steyrleuthner, R.; Jimison, L. H.; Casadei, A.; Chen, Z.; Toney, M. F.; Facchetti, A.; Neher, D.; Salleo, A. Drastic Control of Texture in a High Performance n-Type Polymeric Semiconductor and Implications for Charge Transport. Macromolecules 2011, 44 (13), 5246-5255.
    (51) Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nature Communications 2013, 4, 2238.
    (52) Brinkmann, M.; Gonthier, E.; Bogen, S.; Tremel, K.; Ludwigs, S.; Hufnagel, M.; Sommer, M. Segregated versus mixed interchain stacking in highly oriented films of naphthalene diimide bithiophene copolymers. ACS Nano 2012, 6 (11), 10319-10326.
    (53) Kim, Y.; Long, D. X.; Lee, J.; Kim, G.; Shin, T. J.; Nam, K.-W.; Noh, Y.-Y.; Yang, C. A Balanced Face-On to Edge-On Texture Ratio in Naphthalene Diimide-Based Polymers with Hybrid Siloxane Chains Directs Highly Efficient Electron Transport. Macromolecules 2015, 48 (15), 5179-5187.
    (54) Matsuda, M.; Lin, C. Y.; Sung, C. Y.; Lin, Y. C.; Chen, W. C.; Higashihara, T. Unraveling the Effect of Stereoisomerism on Mobility-Stretchability Properties of n-Type Semiconducting Polymers with Biobased Epimers as Conjugation Break Spacers. ACS Applied Materials & Interfaces 2023, 15(44), 51492-51506.
    (55) Lin, Y.-C.; Matsuda, M.; Chen, C.-K.; Yang, W.-C.; Chueh, C.-C.; Higashihara, T.; Chen, W.-C. Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules 2021, 54 (16), 7388-7399.
    (56) Chen, C. C.; Su, S. W.; Tung, Y. H.; Wang, P. Y.; Yu, S. S.; Chiu, C. C.; Shih, C. C.; Lin, Y. C. High-Performance Semiconducting Carbon Nanotube Transistors Using Naphthalene Diimide-Based Polymers with Biaxially Extended Conjugated Side Chains. ACS Applied Materials & Interfaces 2024, 16 (34), 45275-45288.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE