簡易檢索 / 詳目顯示

研究生: 温智芳
Wen, Chih-Fang
論文名稱: 經皮藥物傳輸用類乙醇體陰陽離子液胞之研發
Development of Ethosome-like Catanionic Vesicles for Dermal Drug Delivery
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 104
中文關鍵詞: 類乙醇體陰陽離子液胞包覆和釋放行為雙層膜剛性流變性質
外文關鍵詞: ethosome-like catanionic vesicles, encapsulation and release behaviors, bilayer membrane rigidity, rheological properties
相關次數: 點閱:94下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以脂質和酒精為主材料而形成的液胞結構即稱為乙醇體(ethosome),研究證實其可促進藥物滲透率。本研究致力於發展類乙醇體陰陽離子液胞(ethosome-like catanionic vesicle)作為藥物經皮傳輸用之載體;首先利用沉澱法形成三種類脂質結構的離子對雙親分子(ion-pair-amphiphile, IPA),分別為DeTMA-DS、DeTMA-TS以及DTMA-DS,藉由乙醇為共溶劑的半自發製程,在pH值為7.4的緩衝溶液環境中製備三種類乙醇體陰陽離子液胞;此外,以液胞包覆維他命E醋酸酯(dl-α-tocopheryl acetate, α-TA),並利用具疏水基團修飾的水溶性高分子作為增稠劑,模擬藥物傳輸的潛力與應用性。
    實驗結果顯示,添加膽固醇可以增加三組液胞系統的穩定性;藉由示差掃描熱卡計(differential scanning calorimetry)可獲得三種IPA系統的雙層膜相轉移溫度,配合螢光偏極化(fluorescence polarization)實驗,發現具相對較低相轉移溫度的DeTMA-DS與DeTMA-TS系統而言,其雙層膜剛性(membrane rigidity)隨膽固醇濃度增加而增加;反之,具有相對較高相轉移溫度DTMA-DS系統,其雙層膜剛性隨膽固醇濃度增加而些微下降。進一步研究發現,維他命E醋酸酯的包覆效率和釋放速率分別與雙層膜剛性呈現正和負相關的趨勢。另外,藉由動態流變儀分析液胞與疏水性高分子膠化後之流變性質,當雙層膜剛性越強時,液胞雙層膜疏水性也越強,進而提升包覆效率。而藥物釋放驅動力可能是藉由雙層膜內外藥物濃度梯度而擴散出去,若雙層膜處於較規則排列狀態時,藥物透過雙層膜擴散至外界的阻力較大,因而抑制釋放效率。

    A carrier for enhancing skin delivery of drugs had been discovered and named ‘‘ethosome,’’ which was phospholipid vesicular system embodying ethanol in relatively high concentrations. This work aimed at developing competent ethosome-like catanionic vesicles for dermal drug delivery. Three kinds of lipid-like ion-pair-amphiphiles, IPAs, were prepared by the precipitation method. They were DeTMA-DS, DeTMA-TS and DTMA-DS, respectively, and were thereafter used as the new raw materials to prepare the ethosome-like catanionic vesicles with the aid of ethanol as the cosolvent in aqueous buffer solution whose pH value was 7.4 by a simple semispontaneous process. In addition, the potential applications of the catanionic vesicles as nano-carriers in dermal drug delivery were demonstrated by the encapsulation of vitamin E acetate (α-tocopherol acetate, α-TA) and used a kind of water-soluble polymer with hydrophobic modification as a thickener to improve the viscosity of vesicular dispersion.
    The experimental results revealed that the vesicle stability could be enhanced by the addition of cholesterol. The bilayer membrane phase transition temperatures of three kinds of IPAs were detected via DSC. Cooperating with the results of fluorescence polarization analysis, we find that the bilayer membrane rigidity for DeTMA-DS and DeTMA-TS systems with relatively lower phase transition temperatures increased with the addition of cholesterol. On the other hand, the bilayer membrane rigidity for DTMA-DS system with relatively higher phase transition temperatures slightly decreased with the addition of cholesterol. Moreover, the encapsulation efficiency and released rate of Vitamin E acetate positively and negatively, respectively, correlated to the bilayer membrane rigidity. Finally, analyze the rheological properties by dynamic rheometer to study the hydrophobic interaction between vesicles and polymers. The more rigid bilayer membrane resulted in the stronger hydrophobic interactions, indicating that the more rigid bilayer membrane possessed the stronger bilayer hydrophobicity as well as the higher encapsulation efficiency. As to the driving force of releasing drug might be the concentration gradient of Vitamin E acetate. The more rigid bilayer membrane could hinder the diffusion of drugs and result in the lower released rate.

    摘要 I Abstract III 致謝 V 總目錄 VI 表目錄 IX 圖目錄 X 符號說明 XIII 第一章、緒論 1 1-1 前言 1 1-2 文獻回顧 7 1-2-1 離子對雙親分子 7 1-2-2 製備陰陽離子液胞 8 1-2-3 乙醇體 11 1-2-4 相轉移行為及測定 13 1-2-5 膽固醇 14 1-2-5-1 膽固醇插排至脂質雙層膜中的影響 15 1-2-5-2 膽固醇影響脂質雙層膜剛性 17 1-2-5-3 膽固醇影響液胞包覆疏水性藥物之行為 18 1-2-5-4 膽固醇影響液胞體外釋放疏水性藥物之行為 19 1-2-6 維他命E簡介 19 1-2-6-1 天然型維他命E 20 1-2-6-2 合成型維他命E醋酸酯 20 1-2-7 液胞與高分子的交聯作用 21 1-3 研究動機與目的 24 第二章、實驗 25 2-1 實驗材料 26 2-1-1 陽離子型界面活性劑 26 2-1-2 陰離子型界面活性劑 26 2-1-3 添加劑 27 2-1-4 油溶性藥物 27 2-1-5 高分子 27 2-1-6 其他 28 2-2 實驗儀器及裝置 28 2-2-1 均質機 28 2-2-2 雷射光散射法粒徑/界面電位分析儀 29 2-2-2-1 粒徑量測原理 29 2-2-2-2 界面電位量測原理 30 2-2-3 穿透式電子顯微鏡 32 2-2-4 示差式掃描式熱卡計 33 2-2-5 螢光偏極化 35 2-2-6 凝膠層析 36 2-2-7 高效能液相層析儀 37 2-2-8 動態流變儀 38 2-3 實驗方法 41 2-3-1 製備離子對雙親分子(IPA) 41 2-3-2 製備類乙醇體陰陽離子液胞 42 2-3-3 量測粒徑、界面電位與液胞存活期 43 2-3-4 穿透式電子顯微鏡觀察液胞型態 44 2-3-5 維他命E醋酸酯之包覆效率 45 2-3-6 體外釋放藥物實驗 47 2-3-7 雙層膜相轉移行為 48 2-3-8 利用螢光偏極化探討雙層膜之流動性 49 2-3-9 量測液胞與高分子混合溶液的流變性質 49 第三章、結果與討論 51 3-1 類乙醇體陰陽離子液胞之物理特性 51 3-1-1 初始粒徑 51 3-1-1-1 DeTMA-DS(C10-C12)系統 52 3-1-1-2 DeTMA-TS(C10-C14)系統 53 3-1-1-3 DTMA-DS(C12-C12)系統 53 3-1-2 界面電位 55 3-1-3 穩定性 58 3-1-4 TEM影像 60 3-2 維他命E醋酸酯之包覆效率 63 3-2-1 凝膠層析之分離技術建立 63 3-2-2 膽固醇對維他命E醋酸酯包覆效率之影響 63 3-3 維他命E醋酸酯之釋放百分比 64 3-3-1 類乙醇陰陽離子液胞作為藥物載體釋放維他命E醋酸酯 64 3-3-2 純維他命E醋酸酯之釋放行為 65 3-4 類乙醇體陰陽離子液胞之雙層膜特性 66 3-4-1 雙層膜相轉移溫度 67 3-4-2 膽固醇對雙層膜剛性之影響 68 3-4-3 雙層膜剛性與類乙醇體陰陽離子液胞包覆藥物行為之關聯 71 3-4-4 雙層膜剛性與類乙醇體陰陽離子液胞釋放藥物行為之關聯 74 3-5 高分子與液胞膠化之流變性質 75 3-5-1 相圖 76 3-5-2 儲存模數(G’) 77 3-5-3 高分子與液胞交聯狀態之鬆弛時間(τ) 81 3-5-4 雙層膜剛性與雙層膜疏水性之關聯 86 3-5-5 雙層膜疏水性與維他命E醋酸酯包覆效率之關聯 88 3-5-6 維他命E醋酸酯之影響 89 第四章、結論與建議 91 4-1 結論 91 4-2 建議 93 參考文獻 94 自述 104

    1. Jesorka, A.; Orwar, O., Liposomes: Technologies and Analytical Applications. Annual Review of Analytical Chemistry 2008, 1, 801-832.
    2. Cevc, G.; Blume, G., Lipid Vesicles Penetrate into Intact Skin Owing to the Transdermal Osmotic Gradients and Hydration Force. Biochimica et Biophysica Acta (BBA)-Biomembranes 1992, 1104, 226-232.
    3. Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M., Ethosomes-Novel Vesicular Carriers for Enhanced Delivery: Characterization and Skin Penetration Properties. Journal of Controlled Release 2000, 65, 403-418.
    4. Trommer, H.; Neubert, R., Overcoming the Stratum Corneum: the Modulation of Skin Penetration. Skin Pharmacology and Physiology 2006, 19, 106-121.
    5. Torchilin, V. P., Recent Advances with Liposomes as Pharmaceutical Carriers. Nature Reviews Drug Discovery 2005, 4, 145-160.
    6. Malam, Y.; Loizidou, M.; Seifalian, A. M., Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer. Trends in Pharmacological Sciences 2009, 30, 592-599.
    7. Mahale, N.; Thakkar, P.; Mali, R.; Walunj, D.; Chaudhari, S., Niosomes: Novel Sustained Release Nonionic Stable Vesicular Systems-An Overview. Advances in Colloid and Interface Science 2012, 183-184, 46-54.
    8. Tondre, C.; Caillet, C., Properties of the Amphiphilic Films in Mixed Cationic/Anionic Vesicles: A Comprehensive View From a Literature Analysis. Advances in colloid and interface science 2001, 93, 115-134.
    9. Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J., Spontaneous Vesicle Formation in Aqueous Mixtures of Single-Tailed Surfactants. Science 1989, 245, 1371-1374.
    10. 簡振龍. Formation and Encapsulation of Catanionic Vesicles. 界面科學會誌, 2002.
    11. Wu, K. C.; Huang, Z. L.; Yang, Y. M.; Chang, C. H.; Chou, T. H., Enhancement of Catansome Dormation by Means of Cosolvent Effect: Semi-spontaneous Preparation Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2007, 302, 599-607.
    12. New, R. R. C., Liposomes: A Practical Approach. Oxford University Press, USA: 1990.
    13. Lasic, D. D.; Papahadjopoulos, D., Liposomes and Biopolymers in Drug and Gene Delivery. Current Opinion in Solid State and Materials Science 1996, 1, 392-400.
    14. Yang, Y. M.; Wu, K. C.; Huang, Z. L.; Chang, C. H., On the Stability of Liposomes and Catansomes in Aqueous Alcohol Solutions. Langmuir 2008, 24, 1695-1700.
    15. Marques, E.; Regev, O.; Khan, A.; Lindman, B., Self-Organization of Double-Chained and Pseudodouble-Chained Surfactants: Counterion and Geometry Effects. Advances in Colloid and Interface Science 2003, 100, 83-104.
    16. Fukuda, H.; Kawata, K.; Okuda, H.; Regen, S. L., Bilayer-Forming Ion Pair Amphiphiles from Single-Chain Surfactants. Journal of the American Chemical Society 1990, 112, 1635-1637.
    17. Hirano, K.; Fukuda, H.; Regen, S. L., Polymerizable Ion-Paired Amphiphiles. Langmuir 1991, 7, 1045-1047.
    18. Dubois, M.; Demé, B.; Gulik-Krzywicki, T.; Dedieu, J.-C.; Vautrin, C.; Désert, S.; Perez, E.; Zemb, T., Self-Assembly of Regular Hollow Icosahedra in Salt-Free Catanionic Solutions. Nature 2001, 411, 672-675.
    19. Chung, M.-H.; Park, C.; Chul Chun, B.; Chung, Y.-C., Polymerized Ion Pair Amphiphile Vesicles with pH-Sensitive Transformation and Controlled Release Property. Colloids and Surfaces B: Biointerfaces 2004, 34, 179-184.
    20. Soussan, E.; Cassel, S.; Blanzat, M.; Rico‐Lattes, I., Drug Delivery by Soft Matter: Matrix and Vesicular Carriers. Angewandte Chemie International Edition 2009, 48, 274-288.
    21. Panda, A.; Possmayer, F.; Petersen, N.; Nag, K.; Moulik, S., Physico-Chemical Studies on Mixed Oppositely Charged Surfactants: Their Uses in the Preparation of Surfactant Ion Selective Membrane and Monolayer Behavior at the Air Water Interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 264, 106-113.
    22. Blanzat, M.; Perez, E.; Rico-Lattes, I.; Prome, D.; Prome, J.; Lattes, A., New Catanionic Glycolipids. 1. Synthesis, Characterization, and Biological Activity of Double-Chain and Gemini Catanionic Analogues of Galactosylceramide (galβ1cer). Langmuir 1999, 15, 6163-6169.
    23. Teixeira, C.; Blanzat, M.; Koetz, J.; Rico-Lattes, I.; Brezesinski, G., In-Plane Miscibility and Mixed Bilayer Microstructure in Mixtures of Catanionic Glycolipids and Zwitterionic Phospholipids. Biochimica et Biophysica Acta (BBA)-Biomembranes 2006, 1758, 1797-1808.
    24. Israelachvili, J. N., Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems (Colloid Science). Academic Press New York: 1992.
    25. Stokes, R. J.; Evans, D. F., Fundamentals of Interfacial Engineering. Wiley-VCH: 1996.
    26. Magnusson, B.; Runn, P.; Karlsson, K.; Koskinen, L.-O., Terpenes and Ethanol Enhance the Transdermal Permeation of the Tripeptide Thyrotropin Releasing Hormone in Human Epidermis. International Journal of Pharmaceutics 1997, 157, 113-121.
    27. Touitou, E.; Godin, B.; Weiss, C., Enhanced Delivery of Drugs into and across the Skin by Ethosomal Carriers. Drug Development Research 2000, 50, 406-415.
    28. Lopez-Pinto, J.; Gonzalez-Rodriguez, M.; Rabasco, A., Effect of Cholesterol and Ethanol on Dermal Delivery from DPPC Liposomes. International Journal of Pharmaceutics 2005, 298, 1-12.
    29. Paolino, D.; Lucania, G.; Mardente, D.; Alhaique, F.; Fresta, M., Ethosomes for Skin Delivery of Ammonium Glycyrrhizinate: in vitro Percutaneous Permeation through Human Skin and in vivo Anti-Inflammatory Activity on Human Volunteers. Journal of Controlled Release 2005, 106, 99-110.
    30. Godin, B.; Touitou, E., Erythromycin Ethosomal Systems: Physicochemical Characterization and Enhanced Antibacterial Activity. Current Drug Delivery 2005, 2, 269-275.
    31. Barry, J. A.; Gawrisch, K., Direct NMR Evidence for Ethanol Binding to the Lipid-Water Interface of Phospholipid Bilayers. Biochemistry 1994, 33, 8082-8088.
    32. Semple, S. C.; Chonn, A.; Cullis, P. R., Influence of Cholesterol on the Association of Plasma Proteins with Liposomes. Biochemistry 1996, 35, 2521-2525.
    33. Feitosa, E.; Jansson, J.; Lindman, B., The Effect of Chain Length on the Melting Temperature and Size of Dialkyldimethylammonium Bromide Vesicles. Chemistry and Physics of Lipids 2006, 142, 128-132.
    34. 洪振益. 溫度效應對帶電陰陽離子液胞釋放行的影響. 碩士論文, 國立成功大學, 2009.
    35. Heimburg, T., A Model For the Lipid Pretransition: Coupling of Ripple Formation with the Chain-Melting Transition. Biophysical Journal 2000, 78, 1154-1165.
    36. Villalain, J.; Aranda, F. J.; Gómez‐Fernández, J. C., Calorimetric and Infrared Spectroscopic Studies of the Interaction of α‐Tocopherol and α‐Tocopheryl Acetate with Phospholipid Vesicles. European Journal of Biochemistry 1986, 158, 141-147.
    37. Blandamer, M. J.; Briggs, B.; Cullis, P. M.; Rawlings, B. J.; Engberts, J. B., Vesicle-Cholesterol Interactions: Effects of Added Cholesterol on Gel-to-Liquid Crystal Transitions in a Phospholipid Membrane and Five Dialkyl-Based Vesicles as Monitored Using DSC. Physical Chemistry Chemical Physics 2003, 5, 5309-5312.
    38. 廖怡芬. 長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響. 碩士論文, 國立成功大學, 2006.
    39. 李威漢. 陰陽離子界面活性劑的製備及其相轉移行為的熱卡分析. 碩士論文, 國立成功大學, 2010.
    40. 張維瀚. 添加劑對於陰陽離子雙層膜之相轉移行為的探討. 碩士論文, 國立成功大學, 2012.
    41. Vist, M. R.; Davis, J. H., Phase Equilibria of Cholesterol/Dipalmitoylphosphatidylcholine Mixtures: Deuterium Nuclear Magnetic Resonance and Differential Scanning Calorimetry. Biochemistry 1990, 29, 451-464.
    42. Bhattacharya, S.; Haldar, S., Interactions Between Cholesterol and Lipids in Bilayer Membranes. Role of Lipid Headgroup and Hydrocarbon Chain–Backbone Linkage. Biochimica et Biophysica Acta (BBA)-Biomembranes 2000, 1467, 39-53.
    43. McMullen, T. P.; Lewis, R. N.; McElhaney, R. N., Calorimetric and Spectroscopic Studies of the Effects of Cholesterol on the Thermotropic Phase Behavior and Organization of a Homologous Series of Linear Saturated Phosphatidylglycerol Bilayer Membranes. Biochimica et Biophysica Acta (BBA)- Biomembranes 2009, 1788, 345-357.
    44. Mannock, D. A.; Lewis, R. N.; McElhaney, R. N., A Calorimetric and Spectroscopic Comparison of the Effects of Ergosterol and Cholesterol on the Thermotropic Phase Behavior and Organization of Dipalmitoylphosphatidylcholine Bilayer Membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 2010, 1798, 376-388.
    45. Silva, C.; Aranda, F. J.; Ortiz, A.; Martínez, V.; Carvajal, M.; Teruel, J. A., Molecular Aspects of the Interaction between Plants Sterols and DPPC Bilayers: An Experimental and Theoretical Approach. Journal of Colloid and Interface Science 2011, 358, 192-201.
    46. Michel, N.; Fabiano, A.-S.; Polidori, A.; Jack, R.; Pucci, B., Determination of Phase Transition Temperatures of Lipids by Light Scattering. Chemistry and Physics of Lipids 2006, 139, 11-19.
    47. Ohvo-Rekilä, H.; Ramstedt, B.; Leppimäki, P.; Peter Slotte, J., Cholesterol Interactions with Phospholipids in Membranes. Progress in Lipid Research 2002, 41, 66-97.
    48. Róg, T.; Pasenkiewicz-Gierula, M.; Vattulainen, I.; Karttunen, M., Ordering Effects of Cholesterol and Its Analogues. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009, 1788, 97-121.
    49. Needham, D.; McIntosh, T.; Evans, E., Thermomechanical and Transition Properties of Dimyristoylphosphatidylcholine/Cholesterol Bilayers. Biochemistry 1988, 27, 4668-4673.
    50. Mainali, L.; Hyde, J. S.; Subczynski, W. K., Using Spin-Label W-Band EPR to Study Membrane Fluidity Profiles in Samples of Small Volume. Journal of Magnetic Resonance 2013, 226, 35-44.
    51. Fuller, G. M.; Shields, D., Molecular Basis of Medical Cell Biology. Appleton & Lange: 1998.
    52. Róg, T.; Pasenkiewicz-Gierula, M., Cholesterol Effects on the Phospholipid Condensation and Packing in the Bilayer: A Molecular Simulation Study. FEBS Letters 2001, 502, 68-71.
    53. Wydro, P., The Magnitude of Condensation Induced by Cholesterol on the Mixtures of Sphingomyelin with Phosphatidylcholines-Study on Ternary and Quaternary Systems. Colloids and Surfaces B: Biointerfaces 2011, 82, 594-601.
    54. Severcan, F.; Baykal, Ü.; Süzer, Ş., FTIR Studies of Vitamin E-Cholesterol-DPPC Membrane Interactions in CH2 Region. Fresenius' Journal of Analytical Chemistry 1996, 355, 415-417.
    55. Bhattacharya, S.; Haldar, S., The Effects of Cholesterol Inclusion on the Vesicular Membranes of Cationic Lipids. Biochimica et Biophysica Acta (BBA)-Biomembranes 1996, 1283, 21-30.
    56. 歐陽鐘汕; 劉寄星, 從肥皂泡到液晶生物膜. 9 ed.; 牛頓出版(台灣): 新世紀物理研習叢書, 1995.
    57. Senak, L.; Moore, D.; Mendelsohn, R., Methylene Wagging Progressions as IR Probes of Slightly Disordered Phospholipid Acyl Chain States. The Journal of Physical Chemistry 1992, 96, 2749-2754.
    58. McMullen, T.; Lewis, R.; McElhaney, R. N., Comparative Differential Scanning Calorimetric and FTIR and 31P-NMR Spectroscopic Studies of the Effects of Cholesterol and Androstenol on the Thermotropic Phase Behavior and Organization of Phosphatidylcholine Bilayers. Biophysical Journal 1994, 66, 741-752.
    59. Fournier, I.; Barwicz, J.; Auger, M.; Tancrède, P., The Chain Conformational Order of Ergosterol-or Cholesterol-Containing DPPC Bilayers as Modulated by Amphotericin B: a FTIR Study. Chemistry and Physics of Lipids 2008, 151, 41-50.
    60. Kulkarni, S.; Betageri, G.; Singh, M., Factors Affecting Microencapsulation of Drugs in Liposomes. Journal of Microencapsulation 1995, 12, 229-246.
    61. Mohammed, A.; Weston, N.; Coombes, A.; Fitzgerald, M.; Perrie, Y., Liposome Formulation of Poorly Water Soluble Drugs: Optimisation of Drug Loading and ESEM Analysis of Stability. International Journal of Pharmaceutics 2004, 285, 23-34.
    62. Zhang, J. A.; Anyarambhatla, G.; Ma, L.; Ugwu, S.; Xuan, T.; Sardone, T.; Ahmad, I., Development and Characterization of a Novel Cremophor EL Free Liposome-based Paclitaxel (LEP-ETU) Formulation. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV 2005, 59, 177.
    63. El-Samaligy, M.; Afifi, N.; Mahmoud, E., Increasing Bioavailability of Silymarin Using a Buccal Liposomal Delivery System: Preparation and Experimental Design Investigation. International Journal of Pharmaceutics 2006, 308, 140-148.
    64. Sezer, A. D.; Akbuga, J.; Bas, A. L., In Vitro Evaluation of Enrofloxacin-Loaded MLV Liposomes. Drug Delivery 2007, 14, 47-53.
    65. Mokhtar, M.; Sammour, O. A.; Hammad, M. A.; Megrab, N. A., Effect of Sme Formulation Parameters on Flurbiprofen Encapsulation and Release Rates of Niosomes Prepared from Proniosomes. International Journal of Pharmaceutics 2008, 361, 104-111.
    66. Deniz, A.; Sade, A.; Severcan, F.; Keskin, D.; Tezcaner, A.; Banerjee, S., Celecoxib-Loaded Liposomes: Effect of Cholesterol on Encapsulation and in Vitro Release Characteristics. Bioscience Reports 2010, 30, 365-373.
    67. El-Nesr, O. H.; Yahiya, S. A.; El-Gazayerly, O. N., Effect of Formulation Design and Freeze-Drying on Properties of Fluconazole Multilamellar Liposomes. Saudi Pharmaceutical Journal 2010, 18, 217-224.
    68. Pornsunthorntawee, O.; Chavadej, S.; Rujiravanit, R., Characterization and Encapsulation Efficiency of Rhamnolipid Vesicles with Cholesterol Addition. Journal of Bioscience and Bioengineering 2011, 112, 102-106.
    69. A, A. H. S.; Gokila, A., Formulation and Optimization of Ramipril Niosomes. Journal of Pharmacy Research 2011, 4, 4325-4330.
    70. Ali, M. H.; Moghaddam, B.; Kirby, D. J.; Mohammed, A. R.; Perrie, Y., The Role of Lipid Geometry in Designing Liposomes for the Solubilisation of Poorly Water Soluble Drugs. International Journal of Pharmaceutics 2012.
    71. El-Menshawe, S. F.; Hussein, A. K., Formulation and Evaluation of Meloxicam Niosomes as Vesicular Carriers for Enhanced Skin Delivery. Pharmaceutical Development and Technology 2011, 18, 779-786.
    72. 劉育姍. 陰陽離子液胞包覆維他命E醋酸酯之行為探討. 碩士論文, 國立成功大學, 2011.
    73. Brigelius-Flohe, R.; Traber, M. G., Vitamin E: Function and Metabolism. The FASEB Journal 1999, 13, 1145-1155.
    74. Padamwar, M. N.; Pokharkar, V. B., Development of Vitamin Loaded Topical Liposomal Formulation Using Factorial Design Approach: Drug Deposition and Stability. International Journal of Pharmaceutics 2006, 320, 37-44.
    75. Gallarate, M.; Chirio, D.; Trotta, M.; Eugenia Carlotti, M., Deformable Liposomes as Topical Formulations Containing α-Tocopherol. Journal of Dispersion Science and Technology 2006, 27, 703-713.
    76. Gonnet, M.; Lethuaut, L.; Boury, F., New Trends in Encapsulation of Liposoluble Vitamins. Journal of Controlled Release 2010, 146, 276-290.
    77. Chiu, C. W.; Chang, C. H.; Yang, Y. M., Ethanol Effects on the Gelation Behavior of α-Tocopherol Acetate-Encapsulated Ethosomes with Water-Soluble Polymers. Colloid and Polymer Science 2013, 291, 1341-1352.
    78. Dayan, N.; Touitou, E., Carriers for Skin Delivery of Trihexyphenidyl HCl: Ethosomes vs. Liposomes. Biomaterials 2000, 21, 1879-1885.
    79. Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E., Cannabidiol-Transdermal Delivery and Anti-Inflammatory Effect in a Murine Model. Journal of Controlled Release 2003, 93, 377-387.
    80. Meier, W.; Hotz, J.; Günther-Ausborn, S., Vesicle and Cell Networks: Interconnecting Cells by Synthetic Polymers. Langmuir 1996, 12, 5028-5032.
    81. Ainbinder, D.; Touitou, E., Testosterone Ethosomes for Enhanced Transdermal Delivery. Drug Delivery 2005, 12, 297-303.
    82. Garg, A. K.; Negi, L.; Chauhan, M., Gel Containing Ethosomal Vesicles for Transdermal Delivery of Aceclofenac. International Journal of Pharmacy and Pharmaceutical Sciences 2010, 2, 102-108.
    83. Maestrelli, F.; Capasso, G.; González-Rodríguez, M. L.; Rabasco, A. M.; Ghelardini, C.; Mura, P., Effect of Preparation Technique on the Properties and in Vivo Efficacy of Benzocaine-Loaded Ethosomes. Journal of Liposome Research 2009, 19, 253-260.
    84. Shumilov, M.; Bercovich, R.; Duchi, S.; Ainbinder, D.; Touitou, E., Ibuprofen Transdermal Ethosomal Gel: Characterization and Efficiency in Animal Models. Journal of Biomedical Nanotechnology 2010, 6, 569-576.
    85. Ainbinder, D.; Paolino, D.; Fresta, M.; Touitou, E., Drug Delivery Applications with Ethosomes. Journal of Biomedical Nanotechnology 2010, 6, 558-568.
    86. Akhtar, N.; Pathak, K., Cavamax W7 Composite Ethosomal Gel of Clotrimazole for Improved Topical Delivery: Development and Comparison with Ethosomal Gel. AAPS PharmSciTech 2012, 13, 344-355.
    87. Bhalaria, M.; Naik, S.; Misra, A., Ethosomes: A Novel Delivery System for Antifungal Drugs in the Treatment of Topical Fungal Diseases. Indian Journal of Experimental Biology 2009, 47, 368.
    88. Liu, X.; Liu, H.; Zeng, Z.; Zhou, W.; Liu, J.; He, Z., Pharmacokinetics of Ligustrazine Ethosome Patch in Rats and Anti-Myocardial Ischemia and Anti-Ischemic Reperfusion Injury Effect. International Journal of Nanomedicine 2011, 6, 1391.
    89. Bendas, E. R.; Tadros, M. I., Enhanced Transdermal Delivery of Salbutamol Sulfate via Ethosomes. AAPS PharmSciTech 2007, 8, 213-220.
    90. Antunes, F. E.; Marques, E. F.; Miguel, M. G.; Lindman, B., Polymer-Vesicle Association. Advances in Colloid and Interface Science 2009, 147, 18-35.
    91. Lin, C. C.; Chang, C. H.; Yang, Y. M., Gelation of Dpontaneously Formed Catanionic Vesicles by Water Soluble Polymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009, 346, 66-74.
    92. Huang, Z. L.; Hong, J. Y.; Chang, C. H.; Yang, Y. M., Gelation of Charged Catanionic Vesicles Prepared by a Semispontaneous Process. Langmuir 2010, 26, 2374-2382.
    93. Sarrazin-Cartalas, A.; Iliopoulos, I.; Audebert, R.; Olsson, U., Association and Thermal Gelation in Mixtures of Hydrophobically Modified Polyelectrolytes and Nonionic Surfactants. Langmuir 1994, 10, 1421-1426.
    94. Marques, E. F.; Regev, O.; Khan, A.; Miguel, M. d. G.; Lindman, B., Interactions between Catanionic Vesicles and Oppositely Charged Polyelectrolytes Phase Behavior and Phase Structure. Macromolecules 1999, 32, 6626-6637.
    95. Regev, O.; Marques, E. F.; Khan, A., Polymer-Induced Structural Effects on Catanionic Vesicles. Langmuir 1999, 15, 642-645.
    96. Antunes, F. E.; Marques, E. F.; Gomes, R.; Thuresson, K.; Lindman, B.; Miguel, M. G., Network Formation of Catanionic Vesicles and Oppositely Charged Polyelectrolytes. Effect of Polymer Charge Density and Hydrophobic Modification. Langmuir 2004, 20, 4647-4656.
    97. Biotechnology, P. L., Ion Exchange Chromatography: Principles and Methods. Pharmacia LKB Biotechnology: 1991.
    98. Ferry, J. D., Viscoelastic Properties of Polymers. Wiley New York: 1980; Vol. 3.
    99. Chambon, F.; Winter, H. H., Stopping of Crosslinking Reaction in a PDMS Polymer at the Gel Point. Polymer Bulletin 1985, 13, 499-503.
    100. Muthukumar, M.; Winter, H. H., Fractal Dimension of a Crosslinking Polymer at the Gel Point. Macromolecules 1986, 19, 1284-1285.
    101. Winter, H., Can the Gel Point of a Cross‐linking Polymer be Detected by the G'-G' Crossover? Polymer Engineering & Science 1987, 27, 1698-1702.
    102. Leibler, L.; Rubinstein, M.; Colby, R. H., Dynamics of Reversible Networks. Macromolecules 1991, 24, 4701-4707.
    103. Seng, W.; Tam, K.; Jenkins, R., Rheological Properties of Model Alkali-Soluble Associative (HASE) Polymer in Ionic and Non-ionic Surfactant Solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999, 154, 365-382.
    104. Tirtaatmadja, V.; Tam, K.; Jenkins, R., Effects of Temperature on the Flow Dynamics of a Model HASE Associative Polymer in Nonionic Surfactant Solutions. Langmuir 1999, 15, 7537-7545.
    105. Goodwin, J., Colloids and Interfaces with Surfactants and Polymers. Wiley: 2009.
    106. Yu, W. Y.; Yang, Y. M.; Chang, C. H., Cosolvent Effects on the Spontaneous Formation of Vesicles from 1: 1 Anionic and Cationic Surfactant Mixtures. Langmuir 2005, 21, 6185-6193.
    107. Medronho, B.; Antunes, F. E.; Lindman, B.; Miguel, M. G., Gels of Catanionic Vesicles and Hydrophobically Modified Poly (Ethylene Glycol). Journal of Dispersion Science and Technology 2006, 27, 83-90.
    108. Xi, J.; Guo, R.; Guo, X., Interactions of Hemoglobin with Lecithin Liposomes. Colloid and Polymer Science 2006, 284, 1139-1145.

    下載圖示 校內:2018-07-30公開
    校外:2023-01-01公開
    QR CODE