簡易檢索 / 詳目顯示

研究生: 蔡明章
Tsai, Ming-Chang
論文名稱: 各種不同側身角度跌倒時上肢各關節力學分析
Biomechanical Analysis of Different Trunk Tilting Angles on Joint Loading during Fall on an Outstretched Hand
指導教授: 周有禮
Chou, You-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 80
中文關鍵詞: 肩關節力矩肘關節腕關節跌倒
外文關鍵詞: moment, force, shoulder, elbow, wrist, fall
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於跌倒發生時的研究,先前學者們著重在前傾跌倒的姿勢,發現碰撞發生時腕關節、肘關節及肩關節的角度及部份上肢肌肉的拮抗作用,會影響跌倒時地面垂直反作用力的峰值。本研究以軀幹沿內外側方向傾斜0度、10度、20度及30度時,著地手肘伸直(outstretched hand)姿勢,單手距地5cm釋放著地。各組保持著地手距地高度不變及著地前、後上肢姿勢不變下,探討當軀幹不同側斜角度,在地面垂直反作用力曲線的T1及T2時間點上,腕關節、肘關節及肩關節的受力及受力矩,並比較地面垂直反作用力曲線上Ts、T1、T2、Te時間點間的時段內,上肢各關節吸收能量的數值與比例。
    實驗由10位受測者,藉由懸吊架支撐上身,雙膝著地,在著地手依要求並達距地5cm及軀幹側斜依各組要求下釋放,由動態分析系統收集及分析固定於上肢及軀幹特殊位置處的反光球(markers),在空間的運動軌跡及測力板受力後產生壓電訊號,經EVA軟体處理後,得知作用力、作用力矩與關節壓力中心,經Matlab語言撰寫的程式,計算運動學及動力學資料,再以Excel及SPSS分析所得資料。
    實驗結果顯示,軀幹側斜角度不同,對於T1及T2時間點的地面垂直反作用力沒有影響,但對各關節的內外向剪力有影響,在力矩方面,軀幹側斜對於各關節內收外展力矩(adduction/abduction)及屈曲伸展力矩(Flexion/Extension)有影響。跌倒過程中上肢各關節的吸收能量情況,在不同側斜角度時,因各組跌落時受到實驗動作影響,腳膝蓋已先行著地,吸收了部份能量,展現統計上無明顯差異。

    This study investigated the effects of different tilting angles on joint loading of the upper extremity during fall on an outstretched hand. The absorbed energy and joint loading at Ts, T1, T2 and Te were analyzed.
    Reviewing the past literatures, studies on the forward fall had focused on the relationship between the joint loading and position of the forearm and elbow. Previous studies also stressed the importance of energy absorption by the shoulder and elbow during the forward fall. However, the effects different tilting angles on joint loading of the upper extremity had not been presented.
    Ten healthy young males volunteered for this study. With their outstretched hand 5 cm above the ground, subjects were adjusted to different trunk tilting angles of 0o, 10o, 20oand 30o with the help of a suspension system. The expert vision motion system with 6 CCD camera and one force plate were used to collect kinetics and kinematics data. Using Matlab to calculate kinematics and kinetics, then results can be analyzed by SPSS.
    With different trunk tilting angles, there were significant differences in the medial-lateral shearing force, adduction/abduction moment and flexion/extension moment. Increase of trunk tilting angle resulted in increased lateral shearing force on the wrist , elbow , and shoulder joints.
    With increasing trunk tilting angle, there were greater abduction/adduction moment and flexion/extension moment at T2.Therefore, there is greater risk of shoulder injury.

    中文摘要………………………………………………………I 英文摘要………………………………………………………Ⅲ 誌謝……………………………………………………………V 目錄……………………………………………………………ⅤI 內文目錄………………………………………………………VII 圖目錄…………………………………………………………XI 表目錄…………………………………………………………XIII 符號說明………………………………………………………XV 第一章 緒論………………………………………………….1 前言……………………………….………….…………… 1 1.2文獻回顧………………………………….………………4 1.3研究動機………………………………………………… 8 1.4實驗假說………………………………………………… 9 第二章 理論與分析方法………………………………..… 10   2.1運動學與動力學之理論方法……..……………… 10 2.2實驗假設…………………………..…………… 13 2.3座標系的訂定…………………………………… 14 2.3.1反光球標記位置……………………………14 2.3.2關節中心求法………………………………15 2.3.3生物力學模式座標系………………………17 2.3.4測力板座標系和實驗室座標系間之關係…21 2.4生物力學模式在空間中運動的描述與分析…… 22 2.4.1旋轉矩陣與關節夾角………………………23 2.4.2動力學公式推導……………………………26 2.4.3角速度與角加速度計算……………………29 2.5動力學與運動學的流程………………………… 32 2.5.1運動學計算流程…………………………. 33 2.5.2動力學計算流程……………………………34 第三章 實驗設備與實驗設計………………………………. 35 3.1實驗設備………………………………………… 35 3.1.1硬體設備……………………………………35 3.1.2軟體設備……………………………………37 3.2實驗設計………………………………………… 38 3.2.1人體實驗認許……………………………. 38 3.2.2受測者資料…………………………………38 3.2.3實驗組別……………………………………38 3.2.4實驗姿勢……………………………………39 3.3實驗流程………………………………………… 41 3.4問卷調查………………………………………….42 第四章 實驗結果………………………………………………44 4.1實驗參數定義…………………………………….44 4.2垂直地面反作用力……………………………….45 4.3 T1時關節受力……………………………………47 4.4 T2時關節受力……………………………………51 4.5 T1時關節受力矩………………………………………….54 4.6 T2時關節受力矩…………………………………58 4.7能量吸收………………………………………… 61 4.8問卷……………………………………………… 64 第五章 討論與結論……………………………………………64 5.1垂直地面反作用力與作用時間的影響………… 65 5.2關節受力………………………………………… 67 5.3關節受力矩……………………………………… 69 5.4能量吸收對比與衝擊能量之吸收……………… 70 5.5實驗檢討與建議……………….….…………… 71 5.6結論…………………………….…………………72 5.7未來展望…………………………….……………73 參考文獻…………………………………….…………………74 附錄B 人體計測資料……………………….…………………77 附錄C 實驗問卷…………………………….…………………78 著作權聲明...………………………………….…………… 79 自述……..…………………………………….………………80 圖目錄 圖1-1前傾跌倒實驗……………………………………………4 圖1-2上肢數學模型..................................5 圖1-3單擺式吊架釋放圖..............................6 圖1-4地面垂直反作用力圖............................6 圖2-1上肢各關節所受合力、合力矩之自由體圖..........12 圖2-2反光球標記位置................................14 圖2-3軀幹座標系....................................17 圖2-4上臂座標系....................................18 圖2-5前臂座標系....................................19 圖2-6手部座標系....................................20 圖2-7測力板座標系與實驗室座標系之關係圖............21 圖2-8上肢各關節座標系圖............................22 圖2-9腕、肘、肩關節尤拉角的旋轉順序................24 圖2-10上肢之自由體圖...............................26 圖2-11運動學計算流程圖.............................33 圖2-12動力學計算流程圖.............................34 圖3-1實驗擺設圖....................................36 圖3-2實驗起初姿勢(正面) ...........................39 圖3-3實驗最後姿勢(側面) ...........................40 圖3-4工作流程圖....................................41 圖4-1垂直地面反作用力曲線圖........................45 圖4-2 不同實驗組別下F1-F2之關係圖..................47 表目錄 表4-1各組第一峰值力F1及距離衝擊發生後的時間…………46 表4-2各組第二峰值力F2及距離衝擊發生後的時間..... .46 表4-3 T1時腕關節之受力.............................48 表4-4 T1時肘關節之受力.............................49 表4-5 T1時肩關節之受力.............................50 表4-6 T2時腕關節之受力.............................51 表4-7 T2時肘關節之受力.............................52 表4-8 T2時肩關節之受力.............................53 表4-9 T1時腕關節之受力矩...........................54 表4-10 T1時肘關節之受力矩..........................56 表4-11 T1時肩關節之受力矩..........................57 表4-12 T2時腕關節之受力矩..........................58 表4-13 T2時肘關節之受力矩..........................59 表4-14 T2時肩關節之受力矩..........................60 表4-15關節能量吸收對比.............................61 表4-16能量吸收比較.................................61 表4-17不同時期關節能量吸收百分比...................62 表4-18 Ts至Te各關節能量吸收百分比..................63 表4-19各組問卷評分.................................64

    1. Amis A.A., Miller J.H., The mechanisms of elbow fractures: an investigation using impact tests in vitro. Injury 26(3):163-168, (1995).

    2. Carlsoo S., Johansson O.,Stabilization of ,load on, the elbow joint in some protective movements. Acta Anat, 248-224, (1962).

    3. Chiu j., Robinovitch S.N., Prediction of upper extremity impact forces during falls on the outstretched hand. Journal of Biomechanics; 31(12):1169-76, (1998).

    4. Chou P.H., Chou Y.L., Lou S.Z., Lin C.J., Chiu C.F., Su F.C., Effect of elbow flexion on impact forces of upper extremity on a fall.Clinical Biomechanics 16,888-894, (2001).

    5. Chou P.H., Lin, C.J., Lou, S.Z., Chou, Y.L., and Su, F.C., “The Elbow Load with Various Forearm position During One-handed Push-up Exercise”, International Journal of Sports Medicine, Vol. 23 pp.457-462, 2002 *SGI(Correspondence).

    6. Chou P.H., Chou Y.L., Lin C.J., Shi Y.C., Huang G.F., Su F.C., Wu T.C., Biomechanical Analyses for the Effect of Elbow Initial Flexion Angles on Upper Extremity during A Fall. Biomedical Application, Basis Communications Vol. 14, No.1, pp.40-46, (2002).

    7. Chung, K.C., Spilson, S.V., The frequency and epidemiology of hand and forearm fractures in the United States. Journal of Hand Surgery 26A, 908-915, (2001).

    8. Cummings, S.R., Klingberg, R.J., Fall frequency and characteristics and the risk of hip fractures. Journal of American Geriatrics Society 42, 774-778.

    9. Degoede, K.M., Ashton-Miller, J.A., Fall arrest strategy affects peak hand impact force in a forward fall Journal of Biomechanics 35:843-848, (2002).

    10. Donaldson, I.J., Cook, A., Thomson, R.G., Incidence of fractures in a geographically defined population. Journal of Epidemiology and Community Health 44,241-245, (1990).

    11. Frykman, G, Fracture of the distal radius including sequelae shoulder-hand-finger syndrome. Disturbance in the distal radio-ulnar joint and impairment of nerve function. Acta Orthopaedica Scandinavica 180S.1-153.

    12. Grisso, J.A., Kelsey, J.L., Strom, B.L. et al., Risk factors for falls as a cause of hip fracture in women. New England Journal of Medicine 324, 1326-1331, (1991).

    13. Hsiao. E.T. Robinovitch. S.N. Common protective movements govern unexpected falls from standing height. Journal of Biomechanics 31.1-9, (1998).

    14. Inkelis S.H., Stroberg A.J., Keller E.L., Christenson PD. Roller skating injuries in children. Pediatric Emergency Care;4(2):127-132, (1988).

    15. Melton L.J., Chao E.Y.S., Lane j., Biomechanical aspects of fractures. In: Riggs B.L., Melton L.J.(Eds).Osteoporosis: Etiology, Diagnosis, and Management. Raven Press. New York,111-131, (1988).

    16.Morrey B.F.,An K.N.,Storronont T.J.,Force tramsmission throught the radial head. Journal of Bone and Joint Surgery 1988; 70A: 250-256.

    17. O’Driscoll SW , Morrey BF, Korinek S, An KN. Elbow subluxation and dislocation. A spectrum of instability. Clin Orthop Rel Res ; 280;186-197, (1992).

    18. O’Neill, T.W., Varlow, J., Silman, A.J., Reeve.J, Reid, D.M, Todd. C., Woolf, A.D. Age and sex influences on fall characteristics. Annals of Rheumatic Diseases 53,773-775, (1994).

    19. Palvanen, M, Kannus, P, Parkkari, J. Pitkajarvi, T, Pasanen, M, Vuori, fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls. Osteoporos International l, 822-831, (2000).

    20. Rockwood C.A., Jr., Wilkens K.E., King R.E., Fractures in Children. J.B. Lippencott, Philadephia,P.A, (1987).

    21. Spaite,D.W., Criss, E.A., Valenzuela, T.D., Meislin, H.W., Ross, J., Geriatric injury: an analysis of prehospital demographics, mechanisms, and patterns. Annals of Emergency Medicine 19, 1418-1421, (1990).

    22. Stephen N. Robinovitch and james Chiu , Surface Stiffness Affects Impact Force during a Fall on the Outstretched Hand. Journal of Orthopaedic Research Vol.16, NO3, (1998).

    23. Vellas, B.J. Wayne. S.J., Garry, P.J. Baumgartner, R, N.A two-year longitudinal study of falls in 482 community-dwelling elderly adults. Journal of Gerontology 53A, M264-M274, (1998).

    24. Woltring H.J., a FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Advanced Engineering Software; (8)104-113, (1986).

    25. 吳敦旨、跌倒時肘關節與肩關節不同能量吸收對比對於上肢骨骼系統的影響,國立成功大學碩士論文,民國91年。

    下載圖示 校內:立即公開
    校外:2003-07-30公開
    QR CODE