| 研究生: |
林曉萍 Lin, Hsiao-Ping |
|---|---|
| 論文名稱: |
以重金屬廢水污泥經高溫合成之鐵氧磁體去除H2S之吸收特性 High-Temperature Sorption of Hydrogen Sulfide by Cu-Ferrite from The Heavy Metal Sludge |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | IGCC 、鐵氧磁體 、硫化氫 、脫硫 |
| 外文關鍵詞: | IGCC, Hydrogen sulfide, Desulfurization, Ferrite |
| 相關次數: | 點閱:82 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著天然資源的高度利用,石油及天然氣等能源日益耗竭致使油價不停地在漲,嚴重影響了民生問題。如何善用醞藏最豐富的煤炭,成為未來能源發展的首要目標。而煤炭氣化複循環發電技術(IGCC)具有技術成熟性、能源效率高及符合環保需求等優點,將會是未來的發電主流之ㄧ。現在商業運轉之大型煤炭氣化複循環發電機組(IGCC)皆使用溼式商業化之除硫程序,而溼式除硫必須使用大量冷卻水,使系統熱效率降低為其缺點,為克服此問題以提高熱效率、降低發電及環保成本,利用高溫下乾式除硫方法將是未來的趨勢。
本研究以重金屬廢水污泥經高溫合成之鐵氧磁體作為高溫脫硫的吸收劑,可以兼具資源回收再利用及淨潔材料的目的,研究成果分為以下幾點探討:
1.了解鐵氧磁體吸收劑於多次脫硫-再生後利用率有無衰退的情形,以及吸收劑隨之的變化,結果發現在第二次脫硫後,吸收劑的脫硫效果逐漸提升。
2.以不同操作參數來觀察鐵氧磁體吸收劑利用率改變的情形,包括CO、 H2、H2S的濃度變化與溫度、空間流速的差異對吸收劑利用率的影響。
3.由氧化/還原氣氛之熱重分析觀察鐵氧磁體吸收劑的重量變化。還原氣氛下,鐵氧磁體高溫下會被還原為低氧化數的氧化鐵,甚至元素鐵;氧化氣氛,發現有部分之脫硫後鐵氧磁體會先轉為FeSO4,之後才繼續氧化成為鐵氧磁體。
4.利用XRD、BET、SEM、XPS等分析來觀察脫硫前後吸收劑的變化,以上的分析結果皆證明了碳化鐵的存在以及對脫硫效果的影響。
5.由動力模擬研究發現,第一型衰退模式較能模擬脫硫反應。
To change with each passing day, natural resources is used greatly. The price of gasoline raises because of energy depletion, and it affects the people's livelihood. In order to meet this demand, how to use the most abundant energy of coal as well as improving the efficiency of energy production technologies is being carried out. IGCC (Integrated Gasification Combined Cycle) is one of the ideal method to solve environmental and economic problem by using fossil fuels, especially coal. Hot gas desulfurization is crucial issue in the development of the IGCC system. Nowadays, all commercial IGCC power plants utilize wet desulfurization processes to remove H2S from hot coal gas. However, coal gas was cooled by the wet processes would be decrease the thermal efficiency of the system significantly. Therefore, high temperature removal of H2S techniques is the targets for the researchers in this field.
Desulfurization of hot coal gas using the sludge from Ferrite Process sorbent in a fixed bed reactor was conducted in this study. It can be one kind of clean and recycle materials. The explanation of results can be divided into five major parts.
1.To understand the changes of Cu-Ferrite after multi-cycle desulfurization. It was found that the utilization was raised gradually after the second sulfurated cycle of Cu-Ferrite.
2.The effects of operating factors, such as CO inlet concentration, H2 inlet concentration, H2S inlet concentration, WHSV, and temperature on the removal of H2S were performed.
3.Thermogravimmetry analysis under oxidation/reduction condition. Under reduction condition, ferrite sorbent will be reducted to low-activity iron oxide even elemental iron. Under oxidation condition, some part of sulfurated ferrite sorbent will be oxidized to FeSO4. It will be continuing oxidized to ferrite sorbent.
4.We use XRD、BET、SEM and XPS to understand the changes of sorbents before and after desulfurization. The results of these analysis prove that FexC exists at the first sulfurated cycle of Cu-Ferrite and it affects the reaction.
5.In the operating range of this study, we can find that the deactivation model type I can simulate the desulfurization reaction.
1.劉陽秋,「燒煤發電之先進技術」,台電工程月刊,第571期1-8, 1995。
2.朱信、曾明宗,「煤炭企劃複循環發電機組可行性之研究」,工業技術研究院能源資 源研究所、台灣電力公司電力綜合研究所研究計畫期末報告,1991,p.26-29。
3.徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
4.Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas”, Clean Products and Processes, 2001, 197-208 .
5.中國鋼鐵股份有限公司,「能源密集產業採用淨煤發電技術應用規劃計劃」,經濟部能源委員會,2000。
6.MSDS資料庫http://www.iosh.gov.tw/frame.htm。
7.王志成、李福文,「硫化氫新處理技術:SULFA CHECK與現行方法之比較」,工業污染防治,第30期,1989,197-202
8.Nagl, G., “Controlling H2S emission”, Chemical Engineering, 1997, 125-131.
9.Schaack, J. P., Chan, F.,”H2S Scavenginh-1”, Oil & Gas Journal, 1989, 125-131.
10.Konttinen, J., Mojtahedi, W., “Gasifier Gas Desulfurization at High Temperature and Pressure”, Repr Kemia-Kemi, 20, 847-851, 1993
11.林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系碩士論文,1996。
12.Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation -Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28, .931-940.
13.望熙榮(譯),Cooper, C. D., Alley, F. C.,”空氣污染防治”,中央圖書,1998。
14.Westmoreland, P.R.,Harrison, D.P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gasses”, Envi. Sci. &Tech., 1976, 10(7), 659-661.
15.Van der Ham, A. G. J., Vanderbosch, R. H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO ASI Ser 1996, 42, 117-136.
16.Ayala, R. E. and Marsh, D. W., ” Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processed“, Ind. Eng. Chem. Res. 1991,30, 55-60.
17.Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y.,“Reactivity and Durability of Iron Oxide High Temperature Desulfurization Sorbents”, Energy & Fuels 1993, 7, 632-638
18.Zaho, J., Huang,J, Zhang, J.,Wang, Y., “Influence of Fly Ash on High Temperature Desulfurization Using Iron Oxide Sorbent”, Energy & Fuel, 2002, 16(6), 1585-1590.
19.Lew, S., K. Jothimurugesan, M.Flytzani-Stephanopoulo, “High Temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide- Titanate Dioxide Sorbents”, Ind.Eng.Chem.Res., 1992, 31, 1890-1899.
20.Bakker, W. J. W., Kapteijn, F., Moulijn, J. A., “A High Capacity Manganese-based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning”, Chemical Engineering Journal, 2003, 96, 223-235..
21.Alonso, L., Palacios, J. M., “Performance and Recovering of a Zn-doped Manganese Oxide as a Regenerable Sorbent for Hot Coal Gas Desulfurization”, Energy & Fuel, 2002, 16(6), 1550-1556.
22.Li, Z., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Ind Eng Chem Res , 1997, 36(1), 187-196.
23.Abbasian, J., Slimane, R. B., “A regenerable copper-based sorbent for H2S removal coal gases”, Ind Eng Chem Res, 1998, 37, 2775-2782.
24.Kobayashi, M., Shirai, H.and Nunokawa, M., ” Estimation of Multiple-Cycle Desulfurization Performance for Extremely Low-Concentration Sulfur Removal with Sorbent Containing Zinc Ferrite-Silicon Dioxide Composite Powder”, Energy& Fuels 2002, 16, 1378-1386.
25.Kobayashi, M., Shirai, H.and Nunokawa, M., ”Measurements of Sulfur Capacity Proportional to Zinc Sulfidation on Sorbent Containing Zinc Ferrite-Silica Composite Powder in Pressurized Coal Gas”, Ind. Eng. Chem. Res. 2002, 41, 2903-2909.
26.Kobayashi, M., “Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide”, Ind. Eng. Chem. Res. 2002, 41, 3115-3123
27.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Reduction and Sulfidation Kinetics”, Chem Eng Sci, 1988, 43(11), 3005-3013.
28.Focht, G. D., Ranade, P. V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes”, Chem Eng Sci, 1989, 44(2), 215-224.
29.Pineda, M., Palacios, J. M., Cilleruelo, C., Garcia, E., Ibarra, J. V., “Characterization of Zinc Oxide and Zinc Ferrite Doped with Ti or Cu as Sorbents for Hot Gas Desulfurization”, Appl Surf Sci, 1997, 119,-10.
30.Garcý´a, E., Cilleruelo, C., Ibarra, J.,*, Miguel Pineda, and Jose´ M. Palacios,” Kinetic Study of High-Temperature Removal of H2S by Novel Metal Oxide Sorbents”, Ind. Eng. Chem. Res. 1997, 36, 846-853.
31.Swisher, J. H., Yang, J., Gupta, R. P., “Attirtion-resistant Zinc Titanate Sorbent for Sulfur”, Ind. Eng. Chem. Res., 1995, 34:4463-4471.
32.Jun, H. K., Lee, T. J., Kim, J. C.,“Role of Iron Oxide in the Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures”, Ind. Eng. Chem. Res. 2002, 41, 4733-4738
33.Mojtahedi, W., Abbasian, J., “H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate Sorbents, Part 1:cyclic tests”, Energy Fuels, 1995, 9:782-801.
34.Poston, J. A., “A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through Addition of Lanthanum Oxide”, Ind Eng Chem Res, 1996, 35(3),875-882.
35.Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., “A Study of Zn—Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides”, Ind. Eng. Chem. Res., 2001, 40(16), 3547-3556.
36.Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent-part 2 Perparation and Characterization”, J. Chem. Soc. Faraday Trans.,1998, 94, 443-450.
37.陳文泉,“重金屬廢水鐵氧磁體法處理之基礎研究”,國立成功大學礦冶及材料科學研究所,碩士論文,1992。
38.柯家宇,” 重金屬污泥鐵氧磁體安定化之研究”, 國立成功大學環境工程研究所,碩士論文,2004。
39. Pham-Huu, C., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent- part 2 Perparation and characterization”, J. Chem. Soc. Faraday Trans., 94, p.443-450, 1998.
40. Karayilan, D., Dogu , G., Yasyerli, S., Dogu , G., “Mn-Cu and Mn-Cu-V Mixed-Oxide Regenerable Sorbents for Hot Gas Desulfurization”, American Chemical Society, Accepted November 12, 2004.
41.Kyotani, T., Kawashima, H., Tomita, A., “High Temperature Desulfurization Reaction with Cu-Containing Sorbents”, Environ. Sci. Technol., 1989, 23(2),218-223.
42.張翰青,’’以重金屬廢水污泥產生之鐵氧磁體高溫去除H2S之吸收特性’’,國立成功大學環境工程研究所,碩士論文,2005。
43.Sasaoka, E., Iwamoto, Y., Hirano, S., “Soot Formation over Zinc Ferrite High-Temperature Desulfurization Sorbent”,Energy & Fuels; 1995, 9(2), 344-353.
44.Ryu , S.O., Park , N.K., Chang , C.H., Kim , J.C., Lee , T.J.,“Multicyclic Study on Improved Zn/Ti-Based Desulfurization Sorbents in Mid-Temperature Conditions”, Ind. Eng. Chem. Res. 2004, 43, 1466-1471.
45.國立成功大學西文資料庫,理工學科資料庫,參考工具書型,「POWDER DIFFRATION FILE」,International Cente r for Diffration Data出版,2004,http://cdnet.lib.ncku.edu.tw/doc/pdf.htm
46.柯子星,’’以紅壤在高溫下去除煤炭氣化氣中硫化氫之研究’’,國立成功大學環境工程研究所,博士論文,2005。
47.楊建民,”以酒石酸鹽法低溫(<500oC)合成超微粒鋅鐵氧磁體粉末之反應生成機構研究”,國立成功大學資源工程研究所,博士論文,2001。
48.Sandstrom, A.,Shchukarev, A., Paul, J. ”XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential” , Minerals Engineering ,18 , 505–515,2005.
49.Thomas, J.E., Skinner, W. M., Smart, R. C. “A comparison of the dissolution behavior of troilite with other iron(II) sulfides; implications of structure”, Geochimica et Cosmochimica Acta, 2003, 67(5), No. 5, 831–843.
50.Mikhlin, Y.L., Kuknlinskiy, A. V., Pavlenko, N. I., “Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites”, Geochimica et Cosmochimica Acta, 2002, 66(23), No. 23, 4057–4067.
51.Boursiquot, S., Mullet, M., Abdelmoula, M., “The dry oxidation of tetragonal FeS1-x mackinawite”, Phys. Chem. Minerals, 2001, 28,600-611.
52.Pratt, A. R., Nesbitt, H. W., Mycroft, J. R., “The increased reactivity of pyrrhotite and magnetite phases in sulphide mine tailings”, Journal of Geochemical Expldration,1996 ,56, 1-11.
53.Mycroft, J. R., ”X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite Distribution of oxidized species with depth”, Geochimica et Cosmochimica Acta, 1995, 59(4), No. 4, 721–733.
54.Mullet, M., Boursiquot, S., Abdelmoula, M., ” Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron”, Geochimica et Cosmochimica Acta, 2002, 66(5), No. 5, 829–836.
55.劉啟人,’’銅合金薄膜做為積體電路內連線系統材料之分析與應用’’, 國立成功大學材料科學與工程研究所,,博士論文,2005。
56.Ruowen, F., Yoshizawa,N., Mildred S., Dresselhaus,G., Joe H. Satcher, J., Baumann,T.F.’’ XPS Study of Copper-Doped Carbon Aerogels’’, Langmuir 2002, 18, 10100-10104
57.Chunga, J.B., Chunga, J.S., ”Desulfurization of H2S using cobalt-containing sorbents at lowtemperatures”, Chemical Engineering Science,60, 1515 – 1523,2005.