簡易檢索 / 詳目顯示

研究生: 江坤城
Jiang, Kun-Cheng
論文名稱: 雷射光源補償系統之四自由度FSM設計與驗證
Design and Verification of a 4-DOF FSM for Laser Source Compensation System
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 130
中文關鍵詞: 雷射擾動快速反射鏡四自由度FSM雷射補償系統
外文關鍵詞: Laser disturbances, Fast steering mirror,, 4-DOF FSM, Laser compensation system
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,雷射在各個領域的應用不斷增加,對雷射品質的要求也越來越高。然而,雷射的穩定性和品質不僅會受到本身的因素,如輸入源、組成結構,也會受到外在環境的影響,如溫度、空氣流動與振動等因素而產生四自由度的擾動,包含兩個平移誤差與兩個偏轉誤差。為了解決雷射四自由度擾動的問題,目前市面上最常見的補償元件為FSM,由一個反射鏡與致動器所組成,致動器可產生兩自由度的偏轉運動,進而控制雷射方向,由於雷射存在四自由度的擾動,因此其雷射補償系統通常需要使用兩組FSM才能完整的補償誤差。
    本論文根據補償雷射擾動的必要條件,設計一款四自由度FSM,使用有限元素模擬軟體ANSYS進行電磁模擬與結構模擬,並使用MATLAB/Simulink對其建立運動數學模型進行動態分析,評估動態性能是否符合補償雷射擾動的需求,最後,使用LabVIEW撰寫程式進行實驗控制,驗證四自由度FSM之靜態與動態性能,以滿足補償雷射擾動的條件,並建立四自由度FSM雷射補償系統之PID閉迴路演算法與人機介面,比較雷射經過四自由度FSM補償前後的差異,驗證四自由度FSM雷射補償系統之補償功能,實現即時補償雷射擾動的目的。

    In recent years, the application of lasers have been increasing in various fields. However, the stability and quality of lasers are not only influenced by internal factors such as input power, structure and thermal issues, but also by external environmental factors, including temperature, air flow, and vibration, etc. These factors lead to four degrees of freedom (4-DOF) disturbances in lasers. To reduce laser disturbance problem, the most commonly used compensatory component is the fast steering mirror (FSM). The FSM comprises a reflecting mirror and an actuator that generates 2-DOF rotational motion to control the laser direction. Since lasers have 4-DOF disturbances, the traditional laser compensation system requires the use of two sets of FSM to compensate for these errors.

    In this study, a 4-DOF FSM was designed to compensate for laser disturbances. The 4-DOF FSM is simulated using the finite element analysis software ANSYS to consider both electromagnetic and structural aspects. Additionally, a mathematical model for the 4-DOF FSM is established using MATLAB/Simulink to evaluate its dynamic performance in meeting the requirements for compensating laser disturbances. Finally, experiment is conducted using LabVIEW to verify the static and dynamic performance of the 4-DOF FSM. The study also presents a PID closed-loop algorithm and a human-machine interface for the 4-DOF FSM laser compensation system. By comparing the results before and after compensation by the 4-DOF FSM, the study validates the system's ability to achieve real-time compensation of laser disturbances.

    摘要 I ABSTRACT II 誌謝 X 目錄 XI 圖目錄 XIII 表目錄 XX 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文架構 6 第二章 文獻回顧 7 2-1 雷射擾動相關文獻 7 2-1-1 雷射擾動 7 2-1-2 降低雷射擾動補償系統 9 2-2 FSM設計 13 2-3 多自由度致動器與定位平台 24 第三章 基礎理論 30 3-1 音圈馬達作動原理 30 3-2 音圈馬達基本動態方程式 31 第四章 四自由度FSM結構與設計流程 33 4-1 四自由度FSM整體結構 33 4-2 設計目標與設計流程 37 第五章 四自由度FSM設計與模擬 40 5-1 四自由度FSM作動原理 40 5-2 四自由度FSM模擬 42 5-2-1 四自由度FSM電磁模擬 43 5-2-2 四自由度FSM結構模擬 47 5-3 四自由度FSM基本運動數學模型 53 5-3-1 四自由度FSM基本動態方程式 53 5-3-2 四自由度FSM開迴路動態方程式 56 5-3-3 四自由度FSM閉迴路動態方程式 56 5-4 四自由度FSM動態響應分析 58 5-4-1 四自由度FSM開迴路動態響應 59 5-4-2 四自由度FSM閉迴路動態響應 64 第六章 實驗架設與實驗結果 69 6-1 四自由度FSM製作與組裝 69 6-2 四自由度FSM實驗結果 73 6-2-1 四自由度FSM勞倫茲力與扭矩 73 6-2-2 四自由度FSM電壓與位移和電壓與偏轉角度 81 6-2-3 四自由度FSM開迴路動態響應 89 6-2-4 四自由度FSM閉迴路動態響應 95 6-2-5 四自由度FSM雷射補償系統 102 第七章 結論與未來規劃 115 7-1 結論 115 7-2 未來規劃 116 參考文獻 118

    [1] M. Toyoshima, “Recent Trends in Space Laser Communications for Small Satellites and Constellations,” Journal of Lightwave Technology, vol. 39, no. 3, pp. 693-699, 2021.
    [2] A. Gunalan and L. S. Mattos, “Towards OCT-Guided Endoscopic Laser Surgery&Mdash;a Review,” Diagnostics, vol. 13, no. 4, 2023.
    [3] T. Yasuda, M. Okano, M. Ohtsuka et al., “Raman Silicon Laser Based on a Nanocavity Fabricated by Photolithography,” OSA Continuum, vol. 3, no. 4, pp. 814-823, 2020.
    [4] C. S. Liu and T. Y. Weng, “Thickness and Refractive Index Measurement System for Multilayered Samples,” IEEE Access, vol. 9, pp. 21474-21480, 2021.
    [5] Naresh and P. Khatak, “Laser Cutting Technique: A Literature Review,” Materials Today: Proceedings, vol. 56, pp. 2484-2489, 2022.
    [6] S. Wasielewski and O. Strauss, “Calibration of a Multi-Sensor System Laser Rangefinder/Camera,” in Proceedings of the Intelligent Vehicles '95. Symposium, pp. 472-477, 1995.
    [7] “Laser Technology Market Size, Share & Trends Analysis Report by Type (Solid-State Lasers, Gas Lasers, Liquid Lasers, Semiconductor Lasers), by Product, by Application, by Vertical, by Region, and Segment Forecasts, 2023 - 2030”, https://www.grandviewresearch.com/industry-analysis/laser-technology-market-report (accessed 2023).
    [8] Y. Cao, H. Wang, T. Lv et al., “Research on Large Caliber FSM Digital Control System Based on Voice Coil Motor,” in IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 2778-2781, 2019.
    [9] B. Ran, P. Yang, L. Wen et al., “Design and Analysis of a Reactionless Large-Aperture Fast Steering Mirror with Piezoelectric Actuators,” Applied Optics, vol. 59, no. 4, pp. 1169-1179, 2020.
    [10] Y. Long, X. Wei, C. Wang et al., “Modeling and Design of a Normal Stress Electromagnetic Actuator with Linear Characteristics for Fast Steering Mirror,” Optical Engineering, vol. 53, no. 5, p. 054102, 2014.
    [11] S. K. Liao, H. L. Yong, C. Liu et al., “Long-Distance Free-Space Quantum Key Distribution in Daylight Towards Inter-Satellite Communication,” Nature Photonics, vol. 11, no. 8, pp. 509-513, 2017.
    [12] J. Schlarp, E. Csencsics, and G. Schitter, “Optical Scanning of a Laser Triangulation Sensor for 3-D Imaging,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 6, pp. 3606-3613, 2020.
    [13] D. Baro, S. K. Sharma, and A. A. B. Raj, “Study of a PID Controller for Laser Beam Stabilization System,” in International Conference on System, Computation, Automation and Networking (ICSCAN), pp. 1-5, 2021.
    [14] F. Ishola and M. Cho, “Experimental Study on Photodiode Array Sensor Aided MEMS Fine Steering Mirror Control for Laser Communication Platforms,” IEEE Access, vol. 9, pp. 100197-100207, 2021.
    [15] K. Badham, R. L. Kendrick, D. Wuchenich et al., “Photonic Integrated Circuit-Based Imaging System for Spider,” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), pp. 1-5, 2017.
    [16] J. Zhong, R. Nishida, and T. Shinshi, “Design and Precision Tracking Control of a High-Bandwidth Fast Steering Mirror for Laser Beam Machining,” Precision Engineering, vol. 73, pp. 128-139, 2022.
    [17] “Newport FSM-300”, https://www.newport.com/p/FSM-300-01 (accessed 2023).
    [18] “MRC - Active Laser Beam Stabilization”, https://www.mrc-systems.de/en/products/laser-beam-stabilization (accessed 2023).
    [19] “TEM-Messtechnik - Active Beam Stabilization, Alignment, Guidance, and Beam Switching of Lasers”, https://tem-messtechnik.de/en/products/active-beam-stabilization/ (accessed 2023).
    [20] Y. H. Chang, G. Hao, and C. S. Liu, “Design and Characterisation of a Compact 4-Degree-of-Freedom Fast Steering Mirror System Based on Double Porro Prisms for Laser Beam Stabilization,” Sensors and Actuators A: Physical, vol. 322, p. 112639, 2021.
    [21] Y. H. Chang, C. S. Liu, and C. C. Cheng, “Design and Characterisation of a Fast Steering Mirror Compensation System Based on Double Porro Prisms by a Screw-Ray Tracing Method,” Sensors, vol. 18, no. 11, 2018.
    [22] C. C. Kuo and C. S. Chao, “Characterization of Probe Lasers for Thin-Film Optical Measurements,” Journal of Russian Laser Research, vol. 31, no. 1, pp. 22-31, 2010.
    [23] Z. Tong, Y. Yan, Y. Ma et al., “Equal-Intensity Beam Splitter Fabricated by Segmented Half-Wave Plate for Passive Laser Speckle Reduction,” Optics Letters, vol. 46, no. 16, pp. 3965-3968, 2021.
    [24] K. A. Janulewicz, C. M. Kim, and H. Stiel, “Speckle Statistics and Transverse Coherence of an X-Ray Laser with Fluctuations in Its Active Medium,” Optics Express, vol. 21, no. 3, pp. 3225-3234, 2013.
    [25] G. A. Tyler, “Bandwidth Considerations for Tracking through Turbulence,” Journal of the Optical Society of America A, vol. 11, no. 1, pp. 358-367, 1994.
    [26] C. S. Liu and S. H. Jiang, “A Novel Laser Displacement Sensor with Improved Robustness toward Geometrical Fluctuations of the Laser Beam,” Measurement Science and Technology, vol. 24, no. 10, p. 105101, 2013.
    [27] C. S. Liu, K. W. Lin, and S. H. Jiang, “Development of Precise Autofocusing Microscope Based on Reduction of Geometrical Fluctuations,” in 2012 Proceedings of SICE Annual Conference (SICE), pp. 967-972, 2012.
    [28] C. S. Liu and K. W. Lin, “Numerical and Experimental Characterization of Reducing Geometrical Fluctuations of Laser Beam Based on Rotating Optical Diffuser,” in Optical Engineering, vol. 53, no. 12, p. 122408, 2014.
    [29] D. I. Kim, H. G. Rhee, J. B. Song et al., “Laser Output Power Stabilization for Direct Laser Writing System by Using an Acousto-Optic Modulator,” Review of Scientific Instruments, vol. 78, no. 10, p. 103110, 2007.
    [30] F. Tricot, D. H. Phung, M. Lours et al., “Power Stabilization of a Diode Laser with an Acousto-Optic Modulator,” Review of Scientific Instruments, vol. 89, no. 11, p. 113112, 2018.
    [31] Y. Wan, B. Yang, X. Xi et al., “Comparison and Optimization on Transverse Mode Instability of Fiber Laser Amplifier Pumped by Wavelength-Stabilized and Non-Wavelength-Stabilized 976 nm Laser Diode,” IEEE Photonics Journal, vol. 14, no. 1, pp. 1-5, 2022.
    [32] T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength Stabilization of a Synchronously Pumped Optical Parametric Oscillator: Optimizing Proportional-Integral Control,” Review of Scientific Instruments, vol. 81, no. 5, p. 053101, 2010.
    [33] C. S. Liu and C. H. Tsai, “Design and Characterization of Innovative Optical Prism for Four-Degree-of-Freedom Fast Steering Mirror Active Laser Compensation System,” Review of Scientific Instruments, vol. 93, no. 4, p. 045002, 2022.
    [34] 蔡志豪, “ 具四自由度之fsm主動式雷射光源補償系統的光學鏡組設計與功能驗證 ”, 國立成功大學機械工程學系,碩士論文, 2021.
    [35] X. H. Zhai, F. J. Qi, H. T. Zhang et al., “The Optimized Structure Design in Improving the Bandwidth of Fast Steering Mirror,” in Proceedings of SPIE, vol. 8906, p. 89060J, 2013.
    [36] Q. Zhou, B. T. Pinhas, D. Fan et al., “Design of Fast Steering Mirror Systems for Precision Laser Beams Steering,” in International Workshop on Robotic and Sensors Environments, pp. 144-149, 2008.
    [37] N. S. Michael, A. R. Gerald, K. Mehrdad et al., “Design Considerations for Fast Steering Mirrors (FSMs),” in Proceedings of SPIE, vol. 4773, pp. 63-73, 2002.
    [38] G. Chen, P. Liu, and H. Ding, “Structural Parameter Design Method for a Fast-Steering Mirror Based on a Closed-Loop Bandwidth,” Frontiers of Mechanical Engineering, vol. 15, pp. 55-65, 2020.
    [39] C. Tianqing, W. Quandong, Z. Lei et al., “Battlefield Dynamic Scanning and Staring Imaging System Based on Fast Steering Mirror,” Journal of Systems Engineering and Electronics, vol. 30, no. 1, pp. 37-56, 2019.
    [40] G. Hao, H. Li, Y. H. Chang et al., “Design of Four-DOF Compliant Parallel Manipulators Considering Maximum Kinematic Decoupling for Fast Steering Mirrors,” Actuators, vol. 10, no. 11, 2021.
    [41] L. Zhao, H. Wang, W. Duan et al., “Design and Analysis of a Bi-Axial Centralized Butterfly Flexure Hinge for Fast Steering Mirrors,” Journal of Astronomical Telescopes, Instruments, and Systems, vol. 6, no. 4, p. 048003, 2020.
    [42] M. Liu, X. Zhang, and S. Fatikow, “Design and Analysis of a High-Accuracy Flexure Hinge,” Review of Scientific Instruments, vol. 87, no. 5, p. 055106, 2016.
    [43] W. Zhang, J. Yuan, C. Yan et al., “Multi-Objective Optimization Design of Natural Frequency of Two-Degree-of-Freedom Fast Steering Mirror System,” IEEE Access, vol. 9, pp. 33689-33703, 2021.
    [44] Y. Lu, D. Fan, and Z. Zhang, “Theoretical and Experimental Determination of Bandwidth for a Two-Axis Fast Steering Mirror,” Optik, vol. 124, no. 16, pp. 2443-2449, 2013.
    [45] M. Abid, J. Yu, Y. Xie et al., “Conceptual Design, Modeling and Compliance Characterization of a Novel 2-DOF Rotational Pointing Mechanism for Fast Steering Mirror,” Chinese Journal of Aeronautics, vol. 33, no. 12, pp. 3564-3574, 2020.
    [46] J. Zhou, H. Yin, Y. Wang et al., “Research on Shaftless Fast-Steering Mirror Used in a Precision Tracking-Aiming System,” in Proceedings of SPIE, vol. 6721, p. 67210E, 2007.
    [47] X. Xu, B. Wang, and X. Han, “Fast-Steering Mirror with Self-Aligning Ball Bearing Supporting Structure,” in Proceedings of SPIE, vol. 8418, p. 84180I, 2012.
    [48] C. L. Gregory, “Design of a Small-Aperture Steering Mirror for High Bandwidth Acquisition and Tracking,” Optical Engineering, vol. 29, no. 11, pp. 1360-1365, 1990.
    [49] Z. Wang, B. Zhang, X. Li et al., “Study on Application of Model Reference Adaptive Control in Fast Steering Mirror System,” Optik, vol. 172, pp. 995-1002, 2018.
    [50] X. Wu, S. Chen, B. Shi et al., “High-Powered Voice Coil Actuator for Fast Steering Mirror,” Optical Engineering, vol. 50, no. 2, p. 023002, 2011.
    [51] C. Fang, J. Guo, G. Q. Yang et al., “Design and Performance Test of a Two-Axis Fast Steering Mirror Driven by Piezoelectric Actuators,” Optoelectronics Letters, vol. 12, no. 5, pp. 333-336, 2016.
    [52] Y. Wan, H. Xiong, T. Song et al., “Design of a Fast Steering Mirror Driven by Piezoelectric Ceramics,” Optical Engineering, vol. 61, no. 2, p. 024102, 2022.
    [53] W. Zhu, L. Bian, Y. An et al., “Modeling and Control of a Two-Axis Fast Steering Mirror with Piezoelectric Stack Actuators for Laser Beam Tracking,” Smart Materials and Structures, vol. 24, no. 7, p. 075014, 2015.
    [54] G. Wang and C. Rao, “Adaptive Control of Piezoelectric Fast Steering Mirror for High Precision Tracking Application,” Smart Materials and Structures, vol. 24, no. 3, p. 035019, 2015.
    [55] G. Aigouy, A. Guignabert, E. Betsch et al., “Large Stroke Fast Steering Mirror for Free-Space Optical Communication,” in Proceedings of SPIE, vol. 11852, p. 118525O, 2021.
    [56] M. Hei, L. C. Zhang, Q. K. Zhou et al., “Model-Based Design Method of Two-Axis Four-Actuator Fast Steering Mirror System,” Journal of Central South University, vol. 22, no. 1, pp. 150-158, 2015.
    [57] D. J. Kluk, M. T. Boulet, and D. L. Trumper, “A High-Bandwidth, High-Precision, Two-Axis Steering Mirror with Moving Iron Actuator,” Mechatronics, vol. 22, no. 3, pp. 257-270, 2012.
    [58] Y. Long, J. Mo, X. Wei et al., “Design of a Moving-Magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method,” Journal of Magnetics, vol. 19, no. 3, pp. 300-308, 2014.
    [59] G. Witvoet, S. Kuiper, and A. Meskers, “Performance Validation of a High-Bandwidth Fine Steering Mirror for Optical Communications,” in Proceedings of SPIE, vol. 11180, p. 1118061, 2019.
    [60] R. Xiao, M. Xu, S. Shao et al., “Design and Wide-Bandwidth Control of Large Aperture Fast Steering Mirror with Integrated-Sensing Unit,” Mechanical Systems and Signal Processing, vol. 126, pp. 211-226, 2019.
    [61] W. Chen, S. Chen, X. Wu et al., “A New Two-Dimensional Fast Steering Mirror Based on Piezoelectric Actuators,” in 4th IEEE International Conference on Information Science and Technology, pp. 308-311, 2014.
    [62] E. Csencsics, J. Schlarp, T. Schopf et al., “Compact High Performance Hybrid Reluctance Actuated Fast Steering Mirror System,” Mechatronics, vol. 62, p. 102251, 2019.
    [63] M. T. Francisc, J. E. Derek, R. H. Timothy et al., “High Bandwidth Fast Steering Mirror,” in Proceedings of SPIE, vol. 5877, p. 587707, 2005.
    [64] H. Huang, X. Zheng, and W. Li, “Design and Feedforward Control of Large-Rotation Two-Axis Scan Mirror Assembly with MEMS Sensor Integration,” Chinese Journal of Aeronautics, vol. 32, no. 8, pp. 1912-1922, 2019.
    [65] J. Sun, Y. Ding, H. Zhang et al., “Conceptual Design and Image Motion Compensation Rate Analysis of Two-Axis Fast Steering Mirror for Dynamic Scan and Stare Imaging System,” Sensors, vol. 21, no. 19, 2021.
    [66] T. Shinshi, D. Shimizu, K. Kodeki et al., “A Fast Steering Mirror Using a Compact Magnetic Suspension and Voice Coil Motors for Observation Satellites,” Electronics, vol. 9, no. 12, 2020.
    [67] C. S. Liu, Y. C. Wu, and Y. J. Lan, “Design of 4-DOF Voice Coil Motor with Function of Reducing Laser Geometrical Fluctuations,” Actuators, vol. 10, no. 12, 2021.
    [68] Y. M. Choi and D. G. Gweon, “A High-Precision Dual-Servo Stage Using Halbach Linear Active Magnetic Bearings,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 5, pp. 925-931, 2011.
    [69] X. Li, H. Zhu, J. Ma et al., “Data-Driven Multiobjective Controller Optimization for a Magnetically Levitated Nanopositioning System,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1961-1970, 2020.
    [70] H. Zhu, C. K. Pang, and T. J. Teo, “Analysis and Control of a 6 DOF Maglev Positioning System with Characteristics of End-Effects and Eddy Current Damping,” Mechatronics, vol. 47, pp. 183-194, 2017.
    [71] M. Yang, C. Zhang, X. Huang et al., “A Long-Stroke Nanopositioning Stage with Annular Flexure Guides,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 3, pp. 1570-1581, 2022.
    [72] D. Kang and D. Gweon, “Development of Flexure Based 6-Degrees of Freedom Parallel Nano-Positioning System with Large Displacement,” Review of Scientific Instruments, vol. 83, no. 3, p. 035003, 2012.
    [73] G. Hao, “Determinate Synthesis of Symmetrical, Monolithic Tip–Tilt–Piston Flexure Stages,” Journal of Mechanical Design, vol. 139, no. 4, 2017.
    [74] J. h. Jeong, M. h. Kim, S. Woo et al., “Design of a Six-Degree-of-Freedom Motion Fine Stage Driven by Voice Coil Motors with Flexural Guides,” International Journal of Precision Engineering and Manufacturing, vol. 16, no. 1, pp. 203-207, 2015.
    [75] R. Li, Z. Yang, B. Cai et al., “A Compliant Guiding Mechanism Utilizing Orthogonally Oriented Flexures with Enhanced Stiffness in Degrees-of-Constraint,” Mechanism and Machine Theory, vol. 167, p. 104555, 2022.
    [76] G. Hao, “A 2-Legged XY Parallel Flexure Motion Stage with Minimised Parasitic Rotation,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 228, no. 17, pp. 3156-3169, 2014.
    [77] G. Chen, Y. Ding, X. Zhu et al., “Design and Modeling of a Compliant Tip-Tilt-Piston Micropositioning Stage with a Large Rotation Range,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 233, no. 6, pp. 2001-2014, 2018.
    [78] M. Y. Chen, H. H. Huang, and S. K. Hung, “A New Design of a Submicropositioner Utilizing Electromagnetic Actuators and Flexure Mechanism,” IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 96-106, 2010.
    [79] M. Kim, J. Jeong, H. Kim et al., “A Six-Degree-of-Freedom Magnetic Levitation Fine Stage for a High-Precision and High-Acceleration Dual-Servo Stage,” Smart Materials and Structures, vol. 24, no. 10, p. 105022, 2015.
    [80] S. Basovich, S. A. Arogeti, Y. Menaker et al., “Magnetically Levitated Six-DOF Precision Positioning Stage with Uncertain Payload,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 2, pp. 660-673, 2016.
    [81] W. Y. Jywe, Y. R. Jeng, Y. F. Teng et al., “Development of the Nano-Measuring Machine Stage,” in IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 2970-2973, 2007.
    [82] W. j. Kim, S. Verma, and H. Shakir, “Design and Precision Construction of Novel Magnetic-Levitation-Based Multi-Axis Nanoscale Positioning Systems,” Precision Engineering, vol. 31, no. 4, pp. 337-350, 2007.
    [83] H. Zhang, B. Kou, and Y. Zhou, “Analysis and Design of a Novel Magnetic Levitation Gravity Compensator with Low Passive Force Variation in a Large Vertical Displacement,” IEEE Transactions on Industrial Electronics, vol. 67, no. 6, pp. 4797-4805, 2020.
    [84] C. L. Hsieh, C. S. Liu, and C. C. Cheng, “Design of a 5 Degree of Freedom Voice Coil Motor Actuator for Smartphone Camera Modules,” Sensors and Actuators A: Physical, vol. 309, p. 112014, 2020.
    [85] C. L. Hsieh, H. Y. Wang, Y. H. Chang et al., “Design of VCM Actuator with the Chamfered Edge Magnet for Cellphone,” Microsystem Technologies, vol. 23, no. 12, pp. 5293-5302, 2017.
    [86] D. Ahn, Y. M. Choi, and J. Jeong, “Design of a Four-Degree-of-Freedom Nano Positioner Utilizing Electromagnetic Actuators and Flexure Mechanisms,” Review of Scientific Instruments, vol. 86, no. 3, p. 035101, 2015.
    [87] M. O. Abdenbi, G. Dominique, R. Patrick et al., “Design, Static Modeling and Simulation of a 5-DOF Precise Piezoelectric Positioner,” in Proceedings of SPIE, vol. 9859, p. 98590A, 2016.
    [88] W. S. Nagel and K. K. Leangy, “Design of a Dual-Stage, Three-Axis Hybrid Parallel-Serial-Kinematic Nanopositioner with Mechanically Mitigated Cross-Coupling,” in IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 706-711, 2017.
    [89] B. J. Kenton and K. K. Leang, “Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 2, pp. 356-369, 2012.
    [90] S. Kang, M. G. Lee, and Y. M. Choi, “Six Degrees-of-Freedom Direct-Driven Nanopositioning Stage Using Crab-Leg Flexures,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 2, pp. 513-525, 2020.
    [91] Y. Tian, K. Lu, F. Wang et al., “A Spatial Deployable Three-DOF Compliant Nano-Positioner with a Three-Stage Motion Amplification Mechanism,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1322-1334, 2020.
    [92] J. H. Lee, H. Y. Kim, K. H. Kim et al., “Control of a Hybrid Active-Passive Vibration Isolation System,” Journal of Mechanical Science and Technology, vol. 31, no. 12, pp. 5711-5719, 2017.
    [93] W. Dong, Z. Du, L. Sun et al., “A Compliant Ultra-Precision 6-DOF Parallel Positioner Based on the Coarse/Fine Dual Architecture,” in 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 488-492, 2006.
    [94] D. J. Lee, J. H. Woo, S. U. Kim et al., “Development of “L-Shaped” Rotary Voice Coil Motor Actuator for Ultra Slim Optical Disk Drive Using Integrated Design Method Based on Coupled-Field Analysis,” Japanese Journal of Applied Physics, vol. 46, no. 6S, p. 3715, 2007.
    [95] D. J. Lee, J. S. Oh, S. U. Kim et al., “Design of Swing Arm Actuator for Small and Slim Optical Disc Drives,” Microsystem Technologies, vol. 13, no. 8, pp. 1307-1313, 2007.
    [96] K. J. Smith, D. J. Graham, and J. A. Neasham, “Design and Optimization of a Voice Coil Motor with a Rotary Actuator for an Ultrasound Scanner,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7073-7078, 2015.
    [97] C. S. Liu, P. D. Lin, P. H. Lin et al., “Design and Characterization of Miniature Auto-Focusing Voice Coil Motor Actuator for Cell Phone Camera Applications,” IEEE Transactions on Magnetics, vol. 45, no. 1, pp. 155-159, 2009.
    [98] G. Shan, Y. Li, L. Zhang et al., “Contributed Review: Application of Voice Coil Motors in High-Precision Positioning Stages with Large Travel Ranges,” Review of Scientific Instruments, vol. 86, no. 10, p. 101501, 2015.
    [99] 李鴻飛, “利用磁預壓力之微型音圈馬達自動對焦致動器設計”, 國立中正大學工學院機械工程學系,碩士論文, 2014.
    [100] 謝長霖, “應用於手機相機模組之音圈馬達五軸光學防手震與光學變焦致動器設計”, 國立中正大學工學院機械工程學系,博士論文, 2020.
    [101] H. C. Yu, T. C. Chen, and C. S. Liu, “Adaptive Fuzzy Logic Proportional-Integral-Derivative Control for a Miniature Autofocus Voice Coil Motor Actuator with Retaining Force,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 1-4, 2014.
    [102] S. Nie, X. Liu, F. Yin et al., “Development of a High-Pressure Pneumatic on/off Valve with High Transient Performances Direct-Driven by Voice Coil Motor,” Applied Sciences, vol. 8, no. 4, 2018.
    [103] “Resistance and Resistivity”, https://courses.lumenlearning.com/suny-physics/chapter/20-3-resistance-and-resistivity/ (accessed 2023).
    [104] T.ES.T.HU. (2015). Antenna Circuit Design for RFID Applications. Available: https://www.yumpu.com/en/document/read/42903881/antenna-circuit-design-for-rfid-applications
    [105] “Viscosity and Laminar Flow; Poiseuille’s Law”, https://phys.libretexts.org/Bookshelves/College_Physics/Book%3A_College_Physics_1e_(OpenStax)/12%3A_Fluid_Dynamics_and_Its_Biological_and_Medical_Applications/12.04%3A_Viscosity_and_Laminar_Flow_Poiseuilles_Law (accessed 2023).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE