| 研究生: |
陳韋志 Chen, Wei-Chih |
|---|---|
| 論文名稱: |
聚苯胺之電感電容及蕭基行為研究 Studies on Inductive, Capacitive and Schottky Behavior of Polyaniline |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 蕭基二極體 、超高電容器 、電感行為 、聚苯胺 、導電性高分子 |
| 外文關鍵詞: | Inductive behavior, Schottky diode, Supercapacitor, Conducting polymers, Polyaniline |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究以電化學合成之導電性高分子-聚苯胺分別成膜於白金電極、多孔性碳材電極與黃金電極上,分三部分來依序探討聚苯胺之電感、電容與蕭基性質。本研究中,聚苯胺之水解副產物苯酉昆 (benzoquinone)和氫酉昆 (hydroquinone)對聚苯胺之電化學行為與電子特性有重大之影響。
(1) 聚苯胺之電感行為
於鹽酸溶液中,利用循環伏安法配合上限電位0.9 V,所形成之聚苯胺膜顯現出電感行為。在不同上限電位(0.75和0.9 V)合成的聚苯胺膜,以電化學阻抗分析儀來探討其阻抗特性。阻抗分析結果發現,合成聚苯胺時,若有大量副產物苯酉昆 /氫酉昆 伴隨產生,則此高分子膜有明顯的電感行為顯現。此一結果可進一步地由X射線光電子光譜得到證明。從電化學阻抗和X射線光電子光譜之比較與分析中,說明了於電化學合成聚苯胺過程中所形成的水解副產物是造成聚苯胺電感行為之最主要因素。
(2) 聚苯胺之電容行為
利用循環伏安法植入聚苯胺於高表面積的多孔性碳材內,製備超高電容器之電極。以掃瞄式電子顯微鏡與X射線光電子分析儀來檢視聚苯胺植入之碳電極的表面形態與化學組成。並藉由循環伏安法以及電化學阻抗分析來進行複合電極的電化學特性探討。所提出的等效電路適切地模擬電極之電化學阻抗行為,更進一步地證明聚苯胺所提供之擬電容的重要性。單純多孔性碳電極也在相同的條件下做了對照組的實驗以利於比較分析。電容器的性能是以定電流方式於1 M的硫酸中,電位窗範圍0 0.6 V,進行1000次的充放電測試。聚苯胺植入之複合式碳電極呈現出180 F/g的高電容量,遠大於純碳電極的92 F/g。
(3) 聚苯胺二極體之蕭基行為
以循環伏安法配合兩個不同的上限電位, 0.8和1.1 V,分別在黃金電極上成長聚苯胺高分子膜。經過乾燥處理後,再於聚苯胺表面上以蒸鍍的方式鍍上一層鋁金屬,製作出Al/PANI/Au之蕭基二極體。歐傑電子光譜顯示以1.1 V上限電位合成的聚苯胺膜含有高含量的副產物-苯酉昆 和氫酉昆。含有副產物與不含副產物之聚苯胺跟鋁金屬的接面(Al/PANI)電性性質,以電流-電壓特性和阻抗分析來檢視,同時並探討溫度變化與接面性質的相互關係。結果顯示,內含水解產物之聚苯胺確實會對接面的電性性質造成影響。兩種聚苯胺所形成的Al/PANI接面都可發現有整流效應,但其接面參數,如障壁高、理想係數以及飽和電流密度卻都顯現出極大的差異。於不同溫度下,所測得的兩種元件之阻抗行為趨勢也有所不同;同時藉由等效電路模擬可求得蕭基元件的阻抗參數。綜合電流-電壓特性分析與阻抗分析的結果顯示,含有副產物的聚苯胺所形成的Al/PANI接面會增加元件的接觸電阻、空乏層厚度以及壁障高。
Conducting polymer polyaniline (PANI) was synthesized in aqueous acid solution and deposited on platinum, porous carbon and gold electrodes, respectively to investigate the inductive, capacitive and Schottky properties of the resulting PANI coated electrodes and their corresponding devices. The hydrolysis products of PANI, benzoquinone (BQ) and hydroquinone (HQ) play a determining role in this research. The present study work is systematically summarized in the following three parts.
(1) Inductive behavior of PANI
PANI film electrodeposited in HCl medium using cyclic voltammetry (CV) with an upper potential limit of 0.90 V, exhibited an inductive behavior. PANI films deposited with different conditions were subjected to various applied potentials and the impedance characteristics were recorded through electrochemical impedance spectroscopy (EIS). The impedance results clearly reveal the existence of inductive behavior to PANI. Inductive behavior was observed for PANI films deposited with conditions which favor BQ/HQ formation and further evidenced by X-ray photoelectron spectroscopy (XPS). A comparative analysis of the EIS and XPS results of PANI films prepared under similar conditions with the upper potential limits of 0.75 V and 0.90 V, respectively, clearly documented that the presence of BQ/HQ, the degradation products of PANI, formed during the electrochemical polymerization causes inductive behavior to PANI.
(2) Capacitive behavior of PANI
Electrodes for supercapacitors were fabricated by depositing PANI on high surface area carbons. The surface morphology and chemical composition of the PANI-deposited carbon electrode was characterized by scanning electron microscopy (SEM) and XPS. CV and EIS were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H2SO4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode.
(3) Schottky behavior of PANI-based diodes
Schottky diodes based on Al/PANI, electrodeposited by cyclic voltammetry with two different upper oxidation potentials, 0.8 and 1.1 V, respectively, were fabricated. Auger electron spectroscopy (AES) confirms the presence of hydrolysis products of PANI, BQ and HQ for PANI film deposited with a switch potential of 1.1 V. The electronic properties of the Al/PANI (with inbuilt hydrolysis products) and Al/PANI (without hydrolysis products) junctions were evaluated for different temperatures by current-voltage characteristics and impedance spectroscopy measurements. The presence of inbuilt hydrolysis products with PANI influences the electronic properties of the junction. The junctions were found to be rectifying in both cases but with wide differences in junction parameters, like barrier height, ideality factor and saturation current density, between them. The temperature dependence of impedance spectra of the devices was found to have variations. The combined analyses of current-voltage characteristics and impedance measurements reveal that the presence of hydrolysis products with PANI in Al/PANI junction increases the contact resistance, depletion layer thickness, and barrier height of the device.
1. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gua and A.G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
2. T.A. Skotheim, Handbook of Conducting Polymers, vol. I and II, Marcel Dekker, New York, 1986.
3. H. Naarmann, Synth. Met., 17, 223 (1987).
4. H. Naarmann and N. Theophilou, Synth. Met., 22, 1 (1987).
5. R.S. Kohlman, A.J. Epstein, in: T. Skotheim, J.R. Reynolds, R.L. Elsenbaumer (Eds.), Handbook of Conducting Polymers, Marcel Dekker, New York, 1997 pp. 85-121.
6. H. Shirakawa, E.J. Louis, A.G.. MacDiarmid, C.K. Chiang and A.J. Heeger, J. Chem. Soc. Chem. Commun., 16, 578 (1977).
7. S Lefrant, L.S. Lichtman, M. Temkin, D.C. Fichten, D.C. Miller, G.E. Whitwell and J.M. Burlich, Solid State Commun., 29, 191 (1979).
8. H. Shirakawa, Angew. Chem. Int. Ed., 40, 2574 (2001).
9. A.G. MacDiarmid, Angew. Chem. Int. Ed., 40, 2581 (2001).
10. A.J. Heeger, Angew. Chem. Int. Ed., 40, 2591 (2001).
11. J.H. Schön, A. Dodabalapur, Z. Bao, Ch. Kloc, G. Schenker and B. Batlogg, Nature, 410, 189 (2001).
12. R.L. Greene and B.R. Street, L.J. Suter, Phys. Rev. Lett., 34, 577 (1975).
13. R.N. McDonald and T.W. Campbell, J. Am. Chem. Soc., 82, 4669 (1960).
14. G.A. Lapitskii, S.M. Makin and A.A. Berlin, Vysokomol. Soldin., 9, 1274 (1967).
15. W. Haertel, G. Kossmehl, G. Maneeke, W. Wille, D. Woehrle and D. Zerpner, Angew. Makromol. Chem., 29, 307 (1973).
16. G. Kossmehl and Ber. Bunsenges. Phys. Chem., 83, 417 (1979).
17. L.W. Shacklette, H. Eckhardt, R.R. Chance and R.H. Banghman, J. Chem. Soc. Chem. Commun., 854 (1980).
18. P. Pfluger and O.B. Street, J. Chem. Phys., 80, 544 (1984).
19. A.F. Diaz, J. Chem. Soc. Chem. Commun., 635 (1979).
20. A.F. Diaz, K.K. Kanazawa, J.I. Castillo, J.A. Logan, "Conductive Polymers", (R. B. Seymour, Ed.,) Plenum Press, New York (1981).
21. E.M. Genies, G. Bidan and A.F. Diaz, J. Electroanal. Chem., 149, 101 (1983).
22. R. Jansson, H. Arwin, R. Bjorklund and I. Lundstrom, Thin Solid Films, 125, 205 (1980).
23. A.F. Diaz, A. Matninez, K.K. Kanazawa and M. Salmon, J. Electroanal. Chem., 130, 181 (1980).
24. G. Tourillon and F. Garnier, J. Electroanal Chem., 135, 173 (1982).
25. G. Tourillon and F. Gamier, J. Electroanal. Soc., 130, 2042 (1983).
26. R.J. Waltman, J. Bargon and A.F. Diaz, J. Phys. Chem., 87, 1459 (1983).
27. J.J. Ohsawa, K. Kaneto and K. Yoshino, Jap. J. App. Phys., 23, L663 (1984).
28. G.B. Street, T.C. Clarke, R.H. Geiss, V.Y. Lee, A. Nazzal, P. Pflunger and J.C. Scott, J. Phys. (Paris), C3, 599 (1983).
29. K.K. Kanazawa, A.F. Diaz, M.T. Krounbi and G.B. Street, Synth. Met., 4, 119 (1981).
30. A.F. Diaz and J.A. Logan, J. Electroanal. Chem., 111, 111 (1980).
31. T. Ito, H. Shirakawa and S. Ikeda, J. Polym. Sci. Polym. Chem. Ed., 12, 11 (1974).
32. C.K. Chiang, S.C. Gua, C.R. Fincher, Y.W. Park and A.G.. MacDiarmid, Appl. Phys. Lett., 33, 18 (1978).
33. S.C. Gau, J. Milliken, A. Pron, A.C. MacDiarmid and A.J. Heeger, JCS Chem. Commun., 662 (1979).
34. K. Müllen, G. Wegner (Eds.), Electronic Materials: The Oligomer Approach, Wiley-VCH, Weinheim, 1998.
35. R.H. Friend, R.W. Gymer, A.B. Holmes, E.G.J. Staring, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. dos Santos, J.L. Brédas, M. Lögdlund and W.R. Salaneck, Nature, 397, 121 (1998).
36. B. Wessling, Mater. Corros., 47, 439 (1996).
37. J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti and A.B. Holmes, Nature, 376, 498 (1995).
38. R. Sivakumar and R. Saraswathi, J. Power Sources, 104, 226 (2002).
39. F. Fusalba, P. Gouerec, D. Villers and D. Belanger, J. Electrochem. Soc., 148, A1 (2001).
40. X.C. Li, H. Sirringhaus, F. Garnier, A.B. Holmes, S.C. Moratti, N. Feeder, W. Clegg, S.J. Teat and R.H. Friend, J. Am. Soc., 120, 2206 (1998).
41. H. Sirringhaus, N. Tessler and R.H. Friend, Science, 280, 1741 (1998).
42. G.H. Gelinck, T.C.T. Geuns and D.M.d. Leeuw, Appl. Phys. Lett., 77, 1487 (2000).
43. N. Tessler, G.J. Denton and R.H. Friend, Nature, 382, 695 (1996).
44. M.A. Diaz-Garcia, F. Hide, B.J. Schwartz, M.R. Andersson, Q.B. Pei and A.J. Heeger, Synth. Met., 84, 455 (1997).
45. J. Dresner, RCA Rev., 30, 322 (1969).
46. K. Kaneto, K. Yoshino, K. Kao and Y. Inuishi, Jpn. Appl. Phys., 13, 1023 (1974).
47. R.H. Partridge, Polymer, 24, 733 (1983).
48. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn and A.B. Holmes, Nature, 347, 539 (1990).
49. J. Cornil, D. Beljonne, C.M. Heller, I.H. Campbell, B.K. Laurich, D.L. Smith and J.L. Brédas, Chem. Phys. Lett., 278, 139 (1997).
50. Q. Pei, G. Yu, C. Zhang, Y. Yang and A.J. Heeger, Science, 269, 1086 (1995).
51. Q. Pei, Y. Yang, G. Yu, C. Zhang and A.J. Heeger, J. Am. Chem. Soc., 118, 3922 (1996).
52. D.J. Dick, A.J. Heeger, Y. Yang and Q. Pei, Adv. Mater., 8, 985 (1996).
53. S. Yamasaki, K. Terayama and J. Yano, J. Electrochem. Soc., 143, L212 (1996).
54. A. Di Fabio, A. Giorgi, M. Mastragostino and F. Soavi, J. Electrochem. Soc., 148, A845 (2001).
55. R. Kötz and M. Carlen, Electrochim. Acta, 45, 2483 (2000).
56. M. Gerard, A. Charbey and B.D. Malhotra, Biosens. Bioelectron., 17, 345 (2002).
57. W.J. Sung and Y.H. Bae, Anal. Chem., 72, 2177 (2000).
58. P.R. Unwin and A.J. Bard, Anal. Chem., 64, 113 (1992).
59. A. Tsumura and M. Koezuka, T. Ando, Appl. Phys. Lett., 49, 1210 (1986).
60. J.H. Burroughes, C.A. Jones and R.H. Friend, Nature, 335, 137 (1988).
61. G. Guilaud, M. Al Sadoun, M. Maitrot, J. Simon and M. Bouvet, Chem. Phys. Lett., 167, 503 (1990).
62. A. Tsumura, H. Fuchigami and H. Koezuka, Synth. Met., 41-43, 1181 (1991).
63. G. Horowitz, F. Garnier, A. Yassar, R. Hajlaoui and F. Kouki, Adv. Mater., 8, 52 (1996).
64. F. Garneir, R. Hajlaoui, A. Yassar and P. Srivastava, Science, 265, 1684 (1994).
65. Y. Yang and A.J. Heeger, Nature, 372, 344 (1994).
66. C.J. Dury, C.M.J. Mutsaers, C.M. Hart, M. Matters and D.M. deLeeuw, Appl. Phys. Lett., 73, 108 (1998).
67. Y.Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V.R. Raju and H.E. Katz, Appl. Phys. Lett., 74, 2714 (1999).
68. V. Saxena and B.D. Malhotra, Curr. Appl. Phys., 3, 293 (2003).
69. A.G. MacDiarmid, J.C. Chiang, A.F. Richter and A.J. Epstein, Synth. Met., 18, 285 (1987).
70. R. Pelster, G. Nimtz and B. Wessling, Phys. Rev., B49, 12718 (1994).
71. E.M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 189 (1987).
72. K. Sasaki, M. Kaya. J. Yano, A. Kitani and A. Kunai, J. Electroanal. Chem., 215, 401 (1986).
73. Y. Wei, X. Tang, Y. Sun and W.W. Focke, . J. Polym. Sci. Chem. Edn., 27, 2385 (1989).
74. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem., Interfacial Electrochem., 177, 281 (1984).
75. M. Kancko, H. Nagamura and T. Shimora, Makromol. Chem., Rapid Commun., 8, 179 (1987).
76. Y. Sun, A.G. MacDiarmid and A.J. Epstein, J. Chem. Soc. Chem. Commun., 529 (1990).
77. Y. Cao, A. Andreatta, A.J. Heeger, and P. Smith, Polymer, 30, 2305 (1989).
78. A.G. MacDiarmid, S.K. Manohar, J.C. Masters, Y. Sun, H. Weis and A.J. Epstein, Synth. Met., 41-43, 621 (1991).
79. K. Tzou and R.V. Gregory, Synth. Met., 47, 267 (1992).
80. H. Letheby, J. Chem. Soc., 15, 161 (1862).
81. S.K. Manohar, A.G. MacDiarmid and A.J. Epstein, Synth. Met., 41, 711 (1991).
82. Y. Wei, G.-W. Jang and C.C. Chan, J. Polym. Sci. Part-C. Polymer Letters, 28, 219 (1990).
83. Y. Wei, K.F. Hsueh and G.-W. Jang, Polymer, 35, 3572 (1994).
84. J. Stejskal, P. Kratochvil, and M. Spirkova, Polym., 36, 4135 (1995).
85. N. Gospodinova, L. Terlemezyan, P. Mokreva and K. Kossev, Polymer, 34, 2434 (1993).
86. N. Gospodinova, P. Mokreva and L. Terlemezyan, Polymer, 36, 3585 (1995).
87. A.O. Patil, A.J. Heeger and F. Wudl, Chem. Rev., 88, 183 (1988).
88. J. Bacon and R.N. Adams, J. Am. Chem. Soc., 90, 6596 (1968).
89. D.M. Mohilner, R.N. Adams and W.J. Argersinger, J. Am. Chem. Soc., 13, 680 (1992).
90. A.F. Diaz and J.A. Logan, J. Electroanal. Chem. Interfacial Electrochem., 115, 111 (1980).
91. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem. Interfacial. Electrochem., 177, 293 (1984).
92. T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem. Interfacial. Electrochem., 161, 419 (1984).
93. A. Volkov, G. Tourillon, P.C. Lacaze and J.E. Dubois, J. Electroanal. Chem., 115, 279 (1980).
94. E.M. Genies and C. Tsintavis, J. Electroanal. Chem., 195, 109 (1985).
95. Y. Wei, Y. Sun, G.W. Jang and X. Tang, J. Polym. Sci. Part-C Polymer Letters, 28, 81 (1990).
96. D.M. Mohilner, R.N. Adams and W.J. Argersinger, J. Am. Chem. Soc., 84, 3618 (1962).
97. R.L. Hand and R.F. Nelson, J. Am. Chem. Soc., 125, 1059 (1978).
98. M. Breitenbach and K.H. Heckner, J. Electroanal. Chem., 43, 267 (1971).
99. E.M. Genies and M. Lapkowski, J. Electroanal. Chem., 236, 199 (1987).
100. A. Kitani, M. Kaya, J. Yano, K. Yoshikama and K. Sasaki, Synth. Met., 18, 34 (1987).
101. Y. Cao, P. Smith and A.J. Epstein, Synth. Met., 48, 91 (1992).
102. Y. Cao and P. Smith, Polymer, 34, 3139 (1993).
103. R.F. Bay, S.P. Armes, C.J. Pickett and K.S. Ryder, Polymer, 32, 2456 (1991).
104. L.A. Samuelson, A. Anagnostopoulos, K.S. Alva, J. Kumar and S.K. Tripathy, Macromolecules, 31, 4376 (1998).
105. P.J. Kinlen, J.L. Ding, C.R. Graham and E.E. Resen, Macromolecules, 31, 1735 (1998).
106. G.A. Planes, G.M. Morales, M.C. Miras and C. Barbero, Synth. Met., 97, 223 (1998).
107. N. Kuramoto and A. Tomita, Polymer, 38, 3055 (1997).
108. W. Yin and E. Ruckenstein, Synth. Met., 108, 39 (2000).
109. R.D. Loufty, J.H. Sharp, J. Chem. Phys., 71, 1211 (1979).
110. M.S. Setty, D.P. Amalnerkar, in: M. Prudenziati (Ed.), Thick Film Sensors, Elsevier, Amsterdam, 1994, p. 359.
111. M.C. Bernard and A. Hugot Le Goff, Surf. Interface Anal., 19, 27 (1992).
112. M.C. Bernard and A. Hugot Le Goff, J. Electrochem. Soc., 141, 2682 (1994).
113. A. Hugot Le Goff and M.C. Bernard, Synth. Met., 60, 115 (1993).
114. M.C. Bernad, A. Hugot Le Goff, V.T. Bich and W. Zeng, Synth. Met., 81, 215 (1996).
115. M.C. Bernard, V.T. Bich, S.C. De Torresi and A. Hugot Le Goff, Synth. Met., 84-86, 785 (1997).
116. M.A. Depaoli, A. Zanelli, M. Mastragostino and A.M. Rocco, J. Electroanal. Chem., 435, 217 (1997).
117. E. Kim, K.Y. Lee, M.H. Lee, J.S. Shim and S.B. Rhee, Synth. Met., 84-86, 1367 (1997).
118. V. F. Ivanov, A.A. Nekrasov, O.C. Gribkova and A.V. Vannikov, Synth. Met., 83, 249 (1996).
119. W.A. Gazotti Jr, M.J.D.M. Jannini, S.I. Cordoba De Torresi and M.A. Depaoli, J. Electroanal. Chem., 440, 193 (1997).
120. A. Malinauskas and R. Holze, Ber. Bussenger. Phys. Chem., 101, 1851 (1997).
121. A. Malinauskas and R. Holze, Synth. Met., 97, 31 (1998).
122. M. Leclerc, J. Guay and L.H. Dao, Macromolecules, 22, 649 (1989).
123. J.W. Chevalierr, J.Y. Bergeron and L.H. Dao, J. Am. Chem. Soc., 25, 3325 (1992).
124. M. Ranger and M. Leclerc, Synth. Met., 84, 85 (1997).
125. A.A. Athawale, B.A. Deore and M.V. Kulkami, Mater. Chem. Phys., 60, 262 (1999).
126. Y. Wei, W.W. Focke, G.E. Wuck, A.R. and A.G. MacDiarmid, J. Phys. Chem., 93, 495 (1989).
127. L.X. Wang, X.B. Jing and F.S. Wang, Synth. Met., 41, 745 (1991).
128. F.A. Viva, E.M. Andrade, F.V. Molina and M. Florit, J. Electroanal. Chem., 471, 180 (1999).
129. D. Goncalves, B. Matrenko and L.O.S. Bulhães, J. Electroanal. Chem., 415, 107 (1996).
130. Gazotti, N. Comisso, G.D’Aprano and M. Leclerc, Adv. Mater., 4, 749 (1992).
131. G. Pistoia and R. Rosati, Electrochim. Acta, 3, 333 (1994).
132. M. Mazur, P. Krysiński, Electrochim. Acta, 46, 3963 (2001).
133. F.R. Díaz, C.O. Sánchez, M.A. del Valle, L.H. Tagle, J.C. Bernede and Y. Tregouet, Synth. Met., 92, 99 (1990).
134. W.E. Rudzinski, L. Thrower, R. Sutcliffe and M. Bahrami, Synth. Met., 68, 199 (1995).
135. D. Zhou, P.C. Innis, G.G. Walace, S. Shimizu and S.I. Maeda, Synth. Met., 114, 287 (2000).
136. A. Malinauskas and R. Holze, Ber. Bussenger. Phys. Chem., 101, 1859 (1997).
137. A. Malinauska and R. Holze, Electrochim. Acta, 44, 2613 (1999).
138. A. Malinauska and R. Holze, J. Solid State Electrochem., 3, 239 (1999).
139. K. Chiba, T. Ohsaka and N. Oyama, J. Electroanal. Chem., 217, 239 (1987).
140. N. Comisso, S. Daoli, G. Zotti, S. Zecchin, R. Salsomaso and G. Mengoli, J. Electroanal. Chem., 255, 97 (1988).
141. L.H. Dao, J. Guay and M. Leclerc, Synth. Met., 29, E383 (1989).
142. J. Guay, R. Paynter and L.H. Dao, Macromolecules, 23, 23 (1990).
143. H. Santana, J.R. Matos and M.L.A. Temperini, Polym. J., 30, 315 (1998).
144. A.A. Athawale, B.A. Deore and V.V. Chobukswar, Mat. Chem. Phys., 58, 94 (1999).
145. S. Ye, N.T. Do, L.H. Dao and A.K. Vijh, Synth. Met., 97, 65 (1997).
146. C.Y. Chung, T.C. Wen and A. Gopalan, Mater. Chem. Phys., 71, 148, (2001).
147. M.S. Wu, T.C. Wen and A. Gopalan, J. Electrochem. Soc., 148, D65 (2001).
148. T.C. Wen, L.M. Huang and A. Gopalan, J. Electrochem. Soc., 148, D9 (2001).
149. W.C. Chen, T.C. Wen and A. Gopalan, J. Electrochem. Soc., 148, E427 (2001).
150. J.Y. Lee, X.H. Su and C.Q. Cui, J. Electroanal. Chem., 367, 71 (1994).
151. J.Y. Lee and C.Q. Cui, J. Electroanal. Chem., 403, 109 (1996).
152. H.S.O. Chan, S.C. Ng, W.S. Sim, K.L. Tan and B.T.G. Tan, Macromolecules, 25, 6029 (1992).
153. M.T. Nguyen and A.F. Diaz, Macromolecules, 28, 3411 (1995).
154. C.H. Yang and T.C. Wen, J. Electrochem. Soc., 141,2624 (1994).
155. C.H. Yang and T.C. Wen, J. Appl. Electrochem., 24, 166 (1994).
156. J.Y. Lee and A.J. Epstein, J. Am. Chem. Soc., 112, 2800 (1990).
157. H. Tang, A. Kitani, and S. Ho, Electrochim. Acta, 42, 3421 (1997).
158. S.A. Chen and G.W. Hwang, J. Am. Chem. Soc., 116, 7939 (1994).
159. Y. Yue, Z.H. Wang, K.R. Cromack, A.J. Epstein and A.G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
160. A.A. Karyakin, A.K. Stakhara and A.K. Yatstimirshy, J. Electroanal. Chem., 371, 259 (1994).
161. A.A. Karyakin, I.A. Maltsev and L.V. Lukachova, J. Electroanal. Chem., 402, 217 (1996).
162. T.A. Skotheim, in Handbook of Conducting Polymers, Vol. 1 and 2, Editor, Marcel Dekker, New York (1988).
163. J.L. Bredas and R.R. Chance, in Conjugates Polymeric Materials: Opportunities in Electronics, Optoelectronics and Molecular Electronics, Editors, Kluwer Acadamic Pub., Dordrecht (1990).
164. T.A. Skotheim, in Electroresponsive Molecular and Polymeric Systems, Vol. II, Editor, Marcel Dekker, Inc., New York (1992).
165. G.P. Evans, in Advances in Electrochemical Science and Engineering (Edited by H. Gerischer, C.H. Tobias), Vol. 1, VCH, New York (1990).
166. E.M. Genies, M. Lapkowski and C. Tsintavis, New J. Chem., 12, 181 (1988).
167. C.C. Hu and C.H. Chu, Mat. Chem. Phys., 65, 329 (2000).
168. C.C. Hu and C.H. Chu, J. Electroanal. Chem., 503, 105 (2001).
169. E.T. Kang, K.G. Neoh, K.L. Tan, in Handbook of Organic Conductive Molecules and Polymers (Edited by H. S. Nalwa), Vol. 3, John Wiley & Sons (1997).
170. K. Roβberg, G. Paasch, L. Dunsch and S. Ludwig, J. Electroanal. Chem., 443, 49 (1998).
171. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 135, 2254 (1988).
172. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 135, 2491 (1988).
173. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 135, 2497 (1988).
174. S.M. Lin and T.C. Wen, Electrochim. Acta, 39, 393 (1994).
175. S.A. Boctor, in Electric Circuit Analysis, 2nd Edition, Prentice-Hall, Englewood Cliffs (1992).
176. R.C. Dorf, in Introduction to Electric Circuits, John Wiley & Sons, New York (1989).
177. C. Deslouis, M.M. Musiani and B. Tribollet, J. Phs. Chem., 98, 2936 (1994).
178. R. Cordova, M.A. Delvalle, A. Arratia, H. Gomez and R. Schrebler, J. Electroanal. Chem., 377, 75 (1994).
179. H.J. Yang and A.J. Bard, J. Electroanal. Chem., 339, 423 (1992).
180. G.S. Popkirov, E. Barsoukov and R.N. Schindler, J. Electroanal. Chem., 425, 209 (1997).
181. C. Deslouis, M.M. Musiani, B. Tribollet and M.A. Vorotyntsev, J. Electrochem. Soc., 142, 1902 (1995).
182. G. Lang and G. Inzelt, Electrochim. Acta, 36, 847 (1991).
183. P. Fiordiponti and G. Pistoia, Electrochim. Acta, 34, 215 (1989).
184. M.A. Vorotyntsev, J.P. Badiali and G. Inzelt, J. Electroanal. Chem., 472, 7 (1999).
185. N.G. Skinner and E.A.H. Hall, Synth. Met., 63, 133 (1994).
186. C. Gabrielli, H. Takenouti, O. Haas and A. Tsukada, J. Electroanal.Chem., 302, 59 (1991).
187. W.A. Gazotti, T. Matencio and M.A. Depaoli, Electrochim. Acta, 43, 457 (1998).
188. A. Benyaich, C. Deslouis, T. Elmoustafid, M.M. Musiani and B. Tribollet, Electrochim. Acta, 41, 1781 (1996).
189. G. Lang and G. Inzelt, Electrochim. Acta, 44, 2037 (1999).
190. Y.F. Li and R.Y. Qian, Synth. Met., 57, 3637 (1993).
191. Y.B. Shim, M.S. Won and S.M. Park, J. Electrochem. Soc., 137, 538 (1990).
192. D.E. Stilwell and S.M. Park, J. Electrochem. Soc., 136, 427 (1989).
193. S.H. Glarum and J.H. Marshall, J. Electrochem. Soc., 134, 2160 (1987).
194. G. Inzelt and G. Lang, J. Electroanal. Chem., 378, 31 (1994).
195. R.P. Buck and C. Mundt, Electrochim. Acta, 44, 1999 (1999).
196. G. Lang, J. Bacskai and G. Inzelt, Electrochim. Acta, 38, 773 (1991).
197. R.D. Armstrong, J. Electroanal. Chem., 198, 177 (1986).
198. P.H. Nguyen and G. Paasch, J. Electroanal. Chem., 460, 63 (1999).
199. C. Ehrenbeck, K. Juttner, S. Ludwig and G. Paasch, Electrochim. Acta, 43, 2781 (1998).
200. J. Tanguy, N. Mermilliod and M. Hoclet, J. Electrochem. Soc., 134, 795 (1987).
201. T. Komura, T. Yamaguti and K. Takahasi, Electrochim. Acta, 41, 2865 (1996).
202. O. Genz, M.M. Lohrengel and J.W. Schultze, Electrochim. Acta, 39, 179 (1994).
203. S.Y. Ye, S. Besner, L.H. Dao and A.K. Vijh, J. Electroanal. Chem., 381, 71 (1995).
204. A. Lewandowski, M. Zajder, E. Frackowiak and F. Beguin, Electrochim. Acta, 46, 2777 (2001).
205. M. Endo, Y.J. Kim, T. Takeda, T. Maeda, T. Hayashi, K. Koshiba, H. Hara and M.S. Dresselhaus, J. Electrochem. Soc., 148, A1135 (2001).
206. T.C. Weng and H. Teng, J. Electrochem. Soc., 148, A368 (2001).
207. H. Shi, Electrochim. Acta, 41, 1633 (1996).
208. M.D. Ingram, A.J. Pappin, F. Delalande, D. Poupard and G. Terzulli, Electrochim. Acta, 43, 1601 (1998).
209. J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang and H. Fang, J. Electrochem. Soc., 148, A1362 (2001).
210. C.C. Hu and C.C. Wang, Electrochem. Comm., 4, 554 (2002).
211. H. Kim and B.N. Popov, J. Power Sources, 104, 52 (2002).
212. K. Naoi, K.I. Kawase, M. Mori and M. Komiyama, J. Electrochem. Soc., 144, L173 (1997).
213. T. Sotomura, H. Uemachi, K. Takeyama, K. Naoi and N. Oyama, Electrochim. Acta, 37, 1851 (1992).
214. B.E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New York (1999).
215. M.G. Han and S.S. Im, Polymer, 41, 3253 (2000).
216. I. Tanahashi, A. Yoshida and A. Nishino, J. Electrochem. Soc., 137, 3052 (1990).
217. Y.R. Nian and H. Teng, J. Electrochem. Soc., 149, A1008 (2002).
218. W.C. Chen, T.C. Wen, C.C. Hu and A. Gopalan, Electrochim. Acta, 47, 1305 (2002).
219. C. Gabrielli, M. Keddam, N. Nadi and H. Perrot, J. Electroanal. Chem., 485, 101 (2000).
220. C. Gabrielli, M. Keddam, N. Nadi and H. Perrot, Electrochim. Acta, 44, 2095 (1999).
221. C. Gabrielli, M. Keddam, H. Perrot, M.C. Pham and R. Torresi, Electrochim. Acta, 44, 4217 (1999).
222. T. Osaka, X. Liu, M. Nojima and T. Momma, J. Electrochem. Soc., 146, 1724 (1999).
223. V.C. Nguyen and K. Potje-Kamloth, Thin Solid Films, 338, 142 (1999).
224. D.M. de Leeuw and E.J. Lous, Synth. Met., 65, 45 (1994).
225. R. Gupta, S.C.K. Misra, B.D. Malhotra, N.N. Beladakere and S. Chandra, Appl. Phys Lett., 58, 51 (1991).
226. W. Bantikassegn and O. Inganäs, Thin Solid Films, 293, 138 (1997).
227. K. Kaneto and W. Takashima, Curr. Appl. Phys., 1, 355 (2001).
228. S.C.K. Misra, M.K. Ram, S.S. Pandey, B.D. Malhotra and S. Chandra, Appl. Phys. Lett., 61, 1219 (1992).
229. R. Singh and A.K. Narula, Appl. Phys. Lett., 71, 2845 (1997).
230. C.H. Yang, J. Electrochem. Soc., 146, 1939 (1999).
231. W. Bantikassegn and O. Inganäs, J. Phys. D: Appl. Phys., 29, 2971 (1996).
232. W. Bantikassegn and O. Inganäs, Synth. Met., 87, 5 (1997).
233. W. Bantikassegn, P. Dannetun, O. Inganäs and W.R. Salaneck, Thin Solid Films, 224, 232 (1993).
234. P. Dannetun, M. Lögdlund, M. Fahlman, M. Boman, S. Stafström and W.R. Salaneck, Synth. Met., 55-57, 212 (1993).
235. P. Dannetun, M. Boman, S. Stafström and W.R. Salaneck, J. Chem. Phys., 99, 664 (1993).
236. A. Lachkar, A. Selmani, E. Sacher, M. Leclerc and R. Mokhliss, Synth. Met., 66, 209 (1994).
237. W.C. Chen, T.C. Wen and A. Gopalan, Electrochim. Acta, 47, 4195 (2002).
238. W.C. Chen, T.C. Wen and A. Gopalan, Synth. Met., 128, 179 (2002).
239. S.S. Pandey, S.C.K. Misra, B.D. Malhotra and S. Chandra, J. Appl. Polym. Sci., 44, 911 (1992).
240. Lj. Duic and S. Grigic, Electrochim. Acta, 46, 2795 (2001).
241. Z. Mandic and Lj. Duic, J. Electroanal. Chem., 403, 133 (1996).
242. S.M. Sze, Physics of Semiconductor Devices, p. 245, Wiley, New York (1993).
243. S. Angappane, N. Rajeev Kini, T.S. Natarajan, G. Rangarajan and B. Wessling, Thin Solid Films, 417, 202 (2002).
244. A. Bozkurt, C. Ercelebi and L. Toppare, Synth. Met., 87, 219 (1997).
245. R. Lazzaroni, J.L. Brédas, P. Dannetun, C. Fredriksson, S. Stafström and W.R. Salaneck, Electrochim. Acta, 39, 235 (1994).