| 研究生: |
郭麗雯 Kuo, Li-Wen |
|---|---|
| 論文名稱: |
不同工作氣體對於微型史特靈引擎影響之實驗與理論分析 Experimental and Numerical Study of Effects of Working Gases on Miniature Stirling Engine |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 微型史特靈引擎 、工作氣體 、理論模擬 、實驗量測 、設計製造 |
| 外文關鍵詞: | Miniature Stirling engine, Working gases, Theoretical model, Experimental measurement, Design and manufacture |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討β型史特靈引擎在不同工作氣體的操作壓力與加熱溫度對輸出功率之影響,設計重點為低重量與小尺寸的微型史特靈引擎,並填充多種氣體對其性能進行實驗量測,研究不同工作氣體對於影響之原因,根據氣體之物理性質差異,即熱傳導係數、黏滯係數、比熱容等導致各輸出功率有所差別。再藉由減少引擎整體尺寸後進行加工組裝,實驗採取菱形驅動機構使移氣器與活塞呈現同軸運動,基於所提出的幾何尺寸大小,結合熱力學理論模型以分析預測史特靈引擎之性能與各腔室的熱力變化。實驗量測針對引擎之轉速、扭矩與輸出功率,研究結果指出,在相同填充壓力7 bar、加熱溫度750 °C情況下,引擎功率表現最突出是以氫氣為工作氣體其次為氦氣、氮氣和空氣,輸出最大軸功約33.5 W,轉速約1300 rpm相較於其他氣體增加約52 %、38 %、25 %。而理論模擬趨勢亦符合實驗量測結果,兩者皆顯示輸出功率將隨轉速增加到最佳運轉之速度後呈現下降的情勢,理論模擬與實驗量測之最大誤差約為15 %。
The purpose of this research is to investigate the gases measurement of the miniature Stirling engine with a rhombic mechanism, that is, the performance of four working gases under different pressures and heating temperatures is used to measure the generated mechanical power and compared the results with theoretical model to verify the accuracy of the model. The Stirling engine mainly composed of displacer, piston, heat exchangers and drive mechanism. This study adopts the theory of non-ideal adiabatic model to discuss the pressure loss and heat loss. From the results of the experiment obtained that at the same charge pressure of 7 bar and heating temperature of 750 °C, the most outstanding performance is hydrogen, followed by helium, nitrogen, and air. For helium, rotation speed of 1295 rpm, the maximum mechanical power is 33.5 W.
1.Ocak, M., Ocak, Z., Bilgen, S., Keleş, S., and Kaygusuz, K. (2004). Energy utilization, environmental pollution and renewable energy sources in Turkey. Energy Conversion and Management, 45(6), 845-864.
2.Lane, N. (2014). Ultra-low temperature free-piston Stirling engine freezers. Division of Global Cooling, Inc.
3.Ross, B. (1995). Status of the emerging technology of Stirling machines. IEEE Aerospace and Electronic Systems Magazine, 10(6), 34-39.
4.Misra, A. (2006). Overview of NASA program on development of radioisotope power systems with high specific power. In 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 4187.
5.Ulloa, C., Porteiro, J., Eguía, P., and Pousada-Carballo, J. M. (2013). Application model for a Stirling engine micro-generation system in caravans in different european locations. Energies, 6(2), 717-732.
6.Valenti, G., Silva, P., Fergnani, N., Di Marcoberardino, G., Campanari, S., and Macchi, E. (2014). Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia, 45, 1235-1244.
7.Thombare, D. G., and Verma, S. K. (2008). Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 12(1), 1-8.
8.Abuelyamen, A., Ben-Mansour, R., Abualhamayel, H., and Mokheimer, E. M.(2017). Parametric study on beta-type Stirling engine. Energy Conversion and Management, 145, 53-63.
9.Aksoy, F., Solmaz, H., Karabulut, H., Cinar, C., Ozgoren, Y. O., and Polat, S. (2016). A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine. Applied Thermal Engineering, 93, 359-367.
10.Chahartaghi, M., and Sheykhi, M. (2018). Energy and exergy analyses of beta-type Stirling engine at different working conditions. Energy Conversion and Management, 169, 279-290.
11.Mabrouk, M. T., Kheiri, A., and Feidt, M. (2015). Effect of leakage losses on the performance of a β type Stirling engine. Energy, 88, 111-117.
12.Erol, D., and Çalışkan, S. (2021). The examination of performance characteristics of a beta‐type Stirling engine with a rhombic mechanism: The influence of various working fluids and displacer piston materials. International Journal of Energy Research, 45(9), 13726-13747.
13.Sripakagorn, A., and Srikam, C. (2011). Design and performance of a moderate temperature difference Stirling engine. Renewable Energy, 36(6), 1728-1733.
14.Cinar, C., Yucesu, S., Topgul, T., and Okur, M. (2005). Beta-type Stirling engine operating at atmospheric pressure. Applied Energy, 81(4), 351-357.
15.Çınar, C., Aksoy, F., Solmaz, H., Yılmaz, E., and Uyumaz, A. (2018). Manufacturing and testing of an α-type Stirling engine. Applied Thermal Engineering, 130, 1373-1379.
16.Cheng, C. H., Yang, H. S., and Keong, L. (2013). Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy, 59, 590-599.
17.林強(2012), 300-W級史特靈引擎理論模式與實作,國立成功大學航空太空工程研究所碩士論文。
18.Darlington, R., and Strong, K. (2005). Stirling and hot air engines. The Crowood Press, Marlborough.
19.Wu, F., Chen, L., Wu, C., and Sun, F. (1998). Optimum performance of irreversible Stirling engine with imperfect regeneration. Energy Conversion and Management, 39(8), 727-732.
20.Costa, S. C., Tutar, M., Barreno, I., Esnaola, J. A., Barrutia, H., García, D., and Prieto, J. I. (2014). Experimental and numerical flow investigation of Stirling engine regenerator. Energy, 72, 800-812.
21.Egas, J., and Clucas, D. M. (2018). Stirling engine configuration selection. Energies, 11(3), 584.
22.Zare, S., and Tavakolpour‐Saleh, A. (2020). Free piston Stirling engines: A review. International Journal of Energy Research, 44(7), 5039-5070.
23.Karabulut, H., Aksoy, F., and Öztürk, E. (2009). Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever. Renewable Energy, 34(1), 202-208.
24.Erol, D., Yaman, H., and Doğan, B. (2017). A review development of rhombic drive mechanism used in the Stirling engines. Renewable and Sustainable Energy Reviews, 78, 1044-1067.
25.Cheng, C. H., and Huang, J. S. (2020). Development of a beta-type moderate temperature differential Stirling engine based on computational and experimental methods. Energies, 13(22), 6029.
26.Çinar, C., Aksoy, F., and Erol, D. (2012). The effect of displacer material on the performance of a low temperature differential Stirling engine. International Journal of Energy Research, 36(8), 911-917.
27.Bitsikas, P., Rogdakis, E., and Dogkas, G. (2020). CFD study of heat transfer in Stirling engine regenerator. Thermal Science and Engineering Progress, 17, 100492.
28.Gheith, R., Hachem, H., Aloui, F., and Nasrallah, S. B. (2015). Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization. Energy Conversion and Management, 105, 285-293.
29.Kumaravelu, T., and Saadon, S. (2022). Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system. Energy, 239, 121881.
30.Cheng, C. H., and Phung, D. T. (2021). Numerical and experimental study of a compact 100‐W‐class β‐type Stirling engine. International Journal of Energy Research, 45(5), 6784-6799.
31.Senft, J. R. (2002). Optimum Stirling engine geometry. International Journal of Energy Research, 26(12), 1087-1101.
32.Kuehl, H. D. (2016). Numerically efficient modelling of non-ideal gases and their transport properties in Stirling cycle simulation. International Stirling Engine Conference and Exhibition (ISEC), Newcastle Upon Tyne, UK, 24-26.
33.Ahmed, F., Hulin, H., and Khan, A. M. (2019). Numerical modeling and optimization of beta-type Stirling engine. Applied Thermal Engineering, 149, 385-400.
34.Bin, L., Yu-ting, W., Chong-fang, M., Meng, Y., and Hang, G. (2009). Turbulent convective heat transfer with molten salt in a circular pipe. International communications in heat and mass transfer, 36(9), 912-916.
35.Boroujerdi, A. A., and Esmaeili, M. (2015). Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators. Alexandria Engineering Journal, 54(4), 787-794.
36.Karabulut, Çınar, C., Oztürk, E., and Yücesu, H. S. (2010). Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renewable Energy, 35(1), 138-143.