簡易檢索 / 詳目顯示

研究生: 郭麗雯
Kuo, Li-Wen
論文名稱: 不同工作氣體對於微型史特靈引擎影響之實驗與理論分析
Experimental and Numerical Study of Effects of Working Gases on Miniature Stirling Engine
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程國際碩博士學位學程
International Master/Doctoral Degree Program on Energy Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 微型史特靈引擎工作氣體理論模擬實驗量測設計製造
外文關鍵詞: Miniature Stirling engine, Working gases, Theoretical model, Experimental measurement, Design and manufacture
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討β型史特靈引擎在不同工作氣體的操作壓力與加熱溫度對輸出功率之影響,設計重點為低重量與小尺寸的微型史特靈引擎,並填充多種氣體對其性能進行實驗量測,研究不同工作氣體對於影響之原因,根據氣體之物理性質差異,即熱傳導係數、黏滯係數、比熱容等導致各輸出功率有所差別。再藉由減少引擎整體尺寸後進行加工組裝,實驗採取菱形驅動機構使移氣器與活塞呈現同軸運動,基於所提出的幾何尺寸大小,結合熱力學理論模型以分析預測史特靈引擎之性能與各腔室的熱力變化。實驗量測針對引擎之轉速、扭矩與輸出功率,研究結果指出,在相同填充壓力7 bar、加熱溫度750 °C情況下,引擎功率表現最突出是以氫氣為工作氣體其次為氦氣、氮氣和空氣,輸出最大軸功約33.5 W,轉速約1300 rpm相較於其他氣體增加約52 %、38 %、25 %。而理論模擬趨勢亦符合實驗量測結果,兩者皆顯示輸出功率將隨轉速增加到最佳運轉之速度後呈現下降的情勢,理論模擬與實驗量測之最大誤差約為15 %。

    The purpose of this research is to investigate the gases measurement of the miniature Stirling engine with a rhombic mechanism, that is, the performance of four working gases under different pressures and heating temperatures is used to measure the generated mechanical power and compared the results with theoretical model to verify the accuracy of the model. The Stirling engine mainly composed of displacer, piston, heat exchangers and drive mechanism. This study adopts the theory of non-ideal adiabatic model to discuss the pressure loss and heat loss. From the results of the experiment obtained that at the same charge pressure of 7 bar and heating temperature of 750 °C, the most outstanding performance is hydrogen, followed by helium, nitrogen, and air. For helium, rotation speed of 1295 rpm, the maximum mechanical power is 33.5 W.

    摘要 I EXTENDED ABSTRACT II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 符號索引 XVII 第一章 前言 1 1.1 研究背景與動機 1 1.2 史特靈引擎的應用2 1.2.1 文獻探討 3 1.3 史特靈引擎介紹 6 1.3.1 引擎機構分類 6 1.4 研究目的 7 1.5 論文架構 9 第二章 引擎設計及實驗設備10 2.1 引擎零件 11 2.1.1 移氣器 11 2.1.2 活塞 12 2.1.3 機構連桿 12 2.1.4 熱交換器 13 2.1.5 曲軸箱 14 2.2 實驗測試 15 2.2.1 引擎測漏 15 2.2.2 保壓測試 15 2.2.3 磨合測試 16 2.3 實驗設備 16 2.3.1 溫度控制器與電熱偶16 2.3.2 真空幫浦與加壓系統17 2.3.3 扭力計與轉速感測計17 2.3.4 磁滯煞車器 18 2.4 實驗步驟 19 第三章 理論模型 22 3.1 引擎幾何參數 22 3.2 活塞與移氣器位移與體積變化23 3.3 初始條件設定 26 3.4 求解方法 36 3.5 模擬結果 37 第四章 結果與討論 39 4.1 實驗數據 39 4.1.1 工作氣體—空氣 40 4.1.2 工作氣體—氮氣 41 4.1.3 工作氣體—氦氣 42 4.1.4 工作氣體—氫氣 44 4.2 填充壓力對引擎功率之影響45 4.3 實驗總結 46 第五章 結論 47 參考文獻 49   表目錄 表2-1 引擎參數幾何表。 53 表3-1 氣體之熱傳導係數表[32]。54 表3-2 氣體之黏滯係數表[32]。 55 表3-3 溫度、壓力與轉速的損失係數表。56 表3-4 氣體之物理性質比較。 57 表4-1 引擎於5 bar不同加熱溫度、工作氣體之實驗結果。58 表4-2 引擎於6 bar不同加熱溫度、工作氣體之實驗結果。59 表4-3 引擎於7 bar不同加熱溫度、工作氣體之實驗結果。60   圖目錄 圖2-1 各腔室示意圖。61 圖2-2 Solidworks幾何模型圖。62 圖2-3 微引擎部分零件之實體照片。63 圖2-4 微引擎零組件。64 圖2-5 組裝完成之微引擎實體照片。65 圖2-6 實驗設備圖。 66 圖2-7 量測設備連接示意圖。68 圖3-1 微引擎之幾何參數示意圖。69 圖3-2 程式流程圖。70 圖3-3 不同氣體P-V圖。71 圖3-4 四種氣體不同填充壓力下之P-V圖。72 圖4-1 工作氣體為空氣,加熱溫度與填充壓力對引擎功率之影響。73 圖4-2 不同壓力下引擎轉速與扭矩之影響。76 圖4-3 工作氣體為氮氣,加熱溫度與填充壓力對引擎功率之影響。77 圖4-4 工作氣體為氦氣,加熱溫度與填充壓力對引擎功率之影響。80 圖4-5 工作氣體為氫氣,加熱溫度與填充壓力對引擎功率之影響。83 圖4-6 不同填充壓力對引擎最大功率的影響。86

    1.Ocak, M., Ocak, Z., Bilgen, S., Keleş, S., and Kaygusuz, K. (2004). Energy utilization, environmental pollution and renewable energy sources in Turkey. Energy Conversion and Management, 45(6), 845-864.
    2.Lane, N. (2014). Ultra-low temperature free-piston Stirling engine freezers. Division of Global Cooling, Inc.
    3.Ross, B. (1995). Status of the emerging technology of Stirling machines. IEEE Aerospace and Electronic Systems Magazine, 10(6), 34-39.
    4.Misra, A. (2006). Overview of NASA program on development of radioisotope power systems with high specific power. In 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 4187.
    5.Ulloa, C., Porteiro, J., Eguía, P., and Pousada-Carballo, J. M. (2013). Application model for a Stirling engine micro-generation system in caravans in different european locations. Energies, 6(2), 717-732.
    6.Valenti, G., Silva, P., Fergnani, N., Di Marcoberardino, G., Campanari, S., and Macchi, E. (2014). Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications. Energy Procedia, 45, 1235-1244.
    7.Thombare, D. G., and Verma, S. K. (2008). Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 12(1), 1-8.
    8.Abuelyamen, A., Ben-Mansour, R., Abualhamayel, H., and Mokheimer, E. M.(2017). Parametric study on beta-type Stirling engine. Energy Conversion and Management, 145, 53-63.
    9.Aksoy, F., Solmaz, H., Karabulut, H., Cinar, C., Ozgoren, Y. O., and Polat, S. (2016). A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine. Applied Thermal Engineering, 93, 359-367.
    10.Chahartaghi, M., and Sheykhi, M. (2018). Energy and exergy analyses of beta-type Stirling engine at different working conditions. Energy Conversion and Management, 169, 279-290.
    11.Mabrouk, M. T., Kheiri, A., and Feidt, M. (2015). Effect of leakage losses on the performance of a β type Stirling engine. Energy, 88, 111-117.
    12.Erol, D., and Çalışkan, S. (2021). The examination of performance characteristics of a beta‐type Stirling engine with a rhombic mechanism: The influence of various working fluids and displacer piston materials. International Journal of Energy Research, 45(9), 13726-13747.
    13.Sripakagorn, A., and Srikam, C. (2011). Design and performance of a moderate temperature difference Stirling engine. Renewable Energy, 36(6), 1728-1733.
    14.Cinar, C., Yucesu, S., Topgul, T., and Okur, M. (2005). Beta-type Stirling engine operating at atmospheric pressure. Applied Energy, 81(4), 351-357.
    15.Çınar, C., Aksoy, F., Solmaz, H., Yılmaz, E., and Uyumaz, A. (2018). Manufacturing and testing of an α-type Stirling engine. Applied Thermal Engineering, 130, 1373-1379.
    16.Cheng, C. H., Yang, H. S., and Keong, L. (2013). Theoretical and experimental study of a 300-W beta-type Stirling engine. Energy, 59, 590-599.
    17.林強(2012), 300-W級史特靈引擎理論模式與實作,國立成功大學航空太空工程研究所碩士論文。
    18.Darlington, R., and Strong, K. (2005). Stirling and hot air engines. The Crowood Press, Marlborough.
    19.Wu, F., Chen, L., Wu, C., and Sun, F. (1998). Optimum performance of irreversible Stirling engine with imperfect regeneration. Energy Conversion and Management, 39(8), 727-732.
    20.Costa, S. C., Tutar, M., Barreno, I., Esnaola, J. A., Barrutia, H., García, D., and Prieto, J. I. (2014). Experimental and numerical flow investigation of Stirling engine regenerator. Energy, 72, 800-812.
    21.Egas, J., and Clucas, D. M. (2018). Stirling engine configuration selection. Energies, 11(3), 584.
    22.Zare, S., and Tavakolpour‐Saleh, A. (2020). Free piston Stirling engines: A review. International Journal of Energy Research, 44(7), 5039-5070.
    23.Karabulut, H., Aksoy, F., and Öztürk, E. (2009). Thermodynamic analysis of a β type Stirling engine with a displacer driving mechanism by means of a lever. Renewable Energy, 34(1), 202-208.
    24.Erol, D., Yaman, H., and Doğan, B. (2017). A review development of rhombic drive mechanism used in the Stirling engines. Renewable and Sustainable Energy Reviews, 78, 1044-1067.
    25.Cheng, C. H., and Huang, J. S. (2020). Development of a beta-type moderate temperature differential Stirling engine based on computational and experimental methods. Energies, 13(22), 6029.
    26.Çinar, C., Aksoy, F., and Erol, D. (2012). The effect of displacer material on the performance of a low temperature differential Stirling engine. International Journal of Energy Research, 36(8), 911-917.
    27.Bitsikas, P., Rogdakis, E., and Dogkas, G. (2020). CFD study of heat transfer in Stirling engine regenerator. Thermal Science and Engineering Progress, 17, 100492.
    28.Gheith, R., Hachem, H., Aloui, F., and Nasrallah, S. B. (2015). Experimental and theoretical investigation of Stirling engine heater: Parametrical optimization. Energy Conversion and Management, 105, 285-293.
    29.Kumaravelu, T., and Saadon, S. (2022). Heat transfer enhancement of a Stirling engine by using fins attachment in an energy recovery system. Energy, 239, 121881.
    30.Cheng, C. H., and Phung, D. T. (2021). Numerical and experimental study of a compact 100‐W‐class β‐type Stirling engine. International Journal of Energy Research, 45(5), 6784-6799.
    31.Senft, J. R. (2002). Optimum Stirling engine geometry. International Journal of Energy Research, 26(12), 1087-1101.
    32.Kuehl, H. D. (2016). Numerically efficient modelling of non-ideal gases and their transport properties in Stirling cycle simulation. International Stirling Engine Conference and Exhibition (ISEC), Newcastle Upon Tyne, UK, 24-26.
    33.Ahmed, F., Hulin, H., and Khan, A. M. (2019). Numerical modeling and optimization of beta-type Stirling engine. Applied Thermal Engineering, 149, 385-400.
    34.Bin, L., Yu-ting, W., Chong-fang, M., Meng, Y., and Hang, G. (2009). Turbulent convective heat transfer with molten salt in a circular pipe. International communications in heat and mass transfer, 36(9), 912-916.
    35.Boroujerdi, A. A., and Esmaeili, M. (2015). Characterization of the frictional losses and heat transfer of oscillatory viscous flow through wire-mesh regenerators. Alexandria Engineering Journal, 54(4), 787-794.
    36.Karabulut, Çınar, C., Oztürk, E., and Yücesu, H. S. (2010). Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism. Renewable Energy, 35(1), 138-143.

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE