簡易檢索 / 詳目顯示

研究生: 吳羽謙
Wu, Yu-Chien
論文名稱: 多鑽石設計流程於健身用收納架的開發應用研究
Multi-Diamond Design Process applied to the development of fitness storage racks
指導教授: 蕭世文
Hsiao, Shih-Wen
謝孟達
Shieh, Meng-Dar
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 工業設計學系
Department of Industrial Design
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 82
中文關鍵詞: 多鑽石理論設計流程人工智慧輔助設計形態學圖表法Pugh 分析法搖籃到搖籃設計企業識別系統設計
外文關鍵詞: Multi-Diamond Theory, Design Process, AI-Assisted Design, Morphological Chart, Pugh Analysis, Cradle-to-Cradle Design, Corporate Identity System Design
相關次數: 點閱:67下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在建立一套應用於健身用收納架開發之整合性設計流程,透過多鑽石設計流程架構,結合生成式人工智慧輔助設計技術、搖籃到搖籃永續設計理念與企業識別系統設計策略,提出一套兼顧創新性、環境永續性與品牌商業價值的工業設計流程模型。多鑽石設計流程由 Hsiao 與 Tsai 於 2024 年提出,為雙鑽石設計理論的進階發展版本,將設計歷程劃分為觀察、需求、市場研究、設計目標、概念產出、概念迭代與產品確認等七個階段,具備高度的靈活性與適用性,能有效支援工業設計中高複雜性與多重迭代的實務需求。研究過程首先透過用戶訪談蒐集潛在使用者對於健身器材收納產品的實際使用需求與語彙,建立設計要素與目標語句,進而運用目標樹理論進行設計目標的層級化拆解。接續進入概念產出階段,利用生成式人工智慧 ChatGPT 作為設計輔助工具,產出大量圖像與文字構想,藉此拓展設計思維並打破傳統概念生成之侷限(Winograd and Flores,1986)。所得設計構想經設計團隊整合後填入形態學圖表進行系統性排列組合,並利用 FSM 限量性結構法將產品拆解為底層、中層、上層與主體造型四大區塊,建立多元設計選項。針對圖表中產生的設計組合,再以 Pugh 概念選擇法進行評估與篩選,評估準則涵蓋安全性、直覺使用性、材料可行性、結構穩定性與市場競爭力等面向,並由設計團隊專家賦予加權進行綜合評分,選出具發展潛力之方案。進一步進入概念迭代階段,分別從搖籃到搖籃設計觀點評估其材料循環利用與低碳排放性,並從企業識別系統設計的視覺識別、品牌理念與行為識別層面進行整體一致性檢視,確保產品在形象傳遞與商業定位上的明確性與識別度。研究最終產出之設計方案不僅回應使用者需求與設計目標,亦成功導入 AI 技術以提高創新效率,並實踐環境永續與品牌價值整合之可能性。研究結果顯示,本研究所建立之多鑽石整合設計流程能有效協助設計師於產品開發過程中系統性整合 AI 生成工具、永續設計策略與品牌識別思維,不僅提升產品創新能量與市場辨識度,亦展現該流程於未來工業設計實務推廣上的高度應用潛力。

    This study aims to establish an integrated design process for the development of fitness equipment storage racks. By adopting the Multi-Diamond Design Process framework, and integrating generative AI-assisted design technology, Cradle-to-Cradle (C2C) sustainable design principles, and Corporate Identity System (CIS) design strategies, the study proposes an industrial design process model that balances innovation, environmental sustainability, and brand commercial value. The Multi-Diamond Design Process, proposed by Hsiao and Tsai in 2024, is an advanced evolution of the Double Diamond design theory. It divides the design process into seven stages: observation, needs identification, market research, design objectives, concept generation, concept iteration, and product validation. This model offers high flexibility and adaptability, making it well-suited for addressing the complex and iterative nature of industrial design practices.
    The research process begins with user interviews to collect real-world usage needs and vocabulary from potential users of fitness equipment storage products. Based on this, design elements and objective statements are constructed. The goal tree method is then used to hierarchically deconstruct the design objectives. In the concept generation stage, ChatGPT is employed as a generative AI tool to produce a wide range of image-based and textual design ideas, thereby expanding design thinking and overcoming the limitations of traditional concept generation (Winograd and Flores, 1986). The resulting design ideas are then synthesized by the design team and input into a morphological chart for systematic recombination. The FSM (Function Structure Matrix) is used to divide the product into four main modules—bottom, middle, top, and main form—establishing diverse design alternatives.
    Subsequently, the design combinations generated in the chart are evaluated and filtered using the Pugh concept selection method. Evaluation criteria include safety, intuitive usability, material feasibility, structural stability, and market competitiveness. Each criterion is weighted by expert designers to derive comprehensive scores, from which the most promising concept is selected for further development. In the concept iteration stage, the selected design is evaluated from a Cradle-to-Cradle perspective in terms of material recyclability and low carbon emissions. It is also reviewed from the CIS perspective, iv including visual identity, brand philosophy, and behavioral recognition, to ensure overall coherence and alignment with brand image and market positioning.
    The final design solution not only meets user needs and design goals but also successfully incorporates AI technologies to enhance innovation efficiency, while realizing the potential for integrating sustainability and brand value. The research results demonstrate that the proposed Multi-Diamond Integrated Design Process effectively supports designers in systematically incorporating AI generative tools, sustainable design strategies, and brand identity thinking throughout the product development cycle. This approach not only enhances product innovation and market recognition but also shows great potential for practical application in future industrial design projects.

    摘要 ii SUMMARY iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix LIST OF SYMBOLS AND ABBREVIATIONS x CHAPTER 1 INTRODUCTION 1 1.1 Research Background 2 1.2 Research Motivation 8 1.3 Research Purpose 10 1.4 Organization of the Thesis 11 1.5 Research Limitations and Scope 12 CHAPTER 2 LITERRATURE REVIEW 14 2.1 Design Planning, Methodology, and Process 14 2.2 Multi-Diamond Theory 17 2.3 AI-Assisted Design 19 2.4 Cradle-to-Cradle Design 21 2.5 Corporate Identity System Design 22 CHAPTER 3 RESERCH METHODS 24 3.1 Objectives Tree Method 24 3.2 Function Structure Modeling 25 3.3 Morphological Chart Method 27 3.4 Pugh Decision Matrix 30 CHAPTER 4 IMPLENTATION PROCEDURES 33 4.1 Establishing a Multi-Diamond Design Process for the Development of Fitness Equipment Storage Racks 34 4.2 User Interviews 37 CHAPTER 5 PRACTICAL APPLICATION AND VALIDATION 40 5.1 Design Objectives 40 5.2 ChatGPT-Assisted Design 42 5.3 Generation of Morphological Charts 47 5.4 Pugh Decision Matrix and Resulted 48 CHAPTER 6 CONCLUSION AND RECOMMENDATIONS 64 6.1 Research Contributions and Outcomes 64 6.2 Future Research and Recommendations 65 REFERENCES 67 APPENDIX 70

    Cross, N. (2021). Engineering design methods: strategies for product design. John Wiley & Sons.
    Design Council. (2005). The double diamond: A universally accepted depiction of the design process. Design Council.
    Gehin, A., Zwolinski, P., & Brissaud, D. (2008). A tool to implement sustainable end-of-life strategies in the product development phase. Journal of cleaner production, 16(5), 566-576.
    Hsiao, S. W. (1994). Fuzzy set theory applied to car style design. International Journal of Vehicle Design, 15(3-5), 255-278.
    Hsiao, S. W., & Fan, C. W. (1996). Integrated FSM STM and DFA method to faucet design. Journal of the Chinese Institute of Industrial Engineers, 13(3), 225-235.
    Hsiao, S. W., & Chou, J. R. (2004). A creativity-based design process for innovative product design. International journal of industrial ergonomics, 34(5), 421-443.
    Hsiao, S. W., & Tsai, Y. J. (2024). Application of Multi-Diamond Processing Model to Hairstyling. Engineering Proceedings, 74(1), 21.
    Hsiao, S. W., & Hu, J. R. (2024, January). Decision-Making on Power Bank Design with Human-Generated Power Using Fuzzy Theory. In 2024 IEEE 7th Eurasian Conference on Educational Innovation (ECEI) (pp. 382-387). IEEE.
    Hsiao, S. W., & Su, K. Y. (2024, January). Application of Fuzzy Logic in Decision-Making for Product Concept Design. In 2024 IEEE 7th Eurasian Conference on Educational Innovation (ECEI) (pp. 81-86). IEEE.
    Jackson, F. (1993). Design for the Real World: Human Ecology and Social Change.
    Kim, J., & Lee, H. (2023). Collaborative creativity with AI in industrial design education: Integrating ChatGPT and image generators. International Journal of Technology and Design Education.
    Lu, P., Hsiao, S. W., Tang, J., & Wu, F. (2024). A generative-AI-based design methodology for car frontal forms design. Advanced Engineering Informatics, 62, 102835.
    Lu, S., Zhang, T., & Chen, Y. (2023). Exploring generative AI tools in early design ideation: A comparative study of Midjourney and DALL·E in product design sketching. Design Studies, 85, 102150.
    McDonough, W., & Braungart, M. (2010). Cradle to cradle: Remaking the way we make things. North point press.
    OpenAI. (2022). Introducing DALL·E 2. OpenAI.
    Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. H. (1996). Engineering design: a systematic approach (Vol. 3). London: Springer.
    Paashuis, V., & Boer, H. (1997). Organizing for concurrent engineering: an integration mechanism framework. Integrated manufacturing systems, 8(2), 79
    Tu, J. C., Luo, S. C., Huang, P. C., & Zhang, X. Y. (2023). Research on methods and strategies of green design carbon reduction for bicycle industry in Taiwan from perspective of product life cycle. Environment, Development and Sustainability, 1-25.
    Tjalve, E. (2015). A short course in industrial design. Elsevier.
    Tuttle, B. L. (1991, June). Design for function: A Cornerstone for DFMA. In International Forum on Product Design for Manufacture and Assembly, Newport, RI.
    Ullman, D. G. (2010). The mechanical design process: Part 2. McGraw-Hill.
    Wu, F., Hsiao, S. W., & Lu, P. (2024). An AIGC-empowered methodology to product color matching design. Displays, 81, 102623.
    Zwicky, F. (2012). Morphological astronomy. Springer Science & Business Media.
    簡召全, 馮明, & 朱崇賢. (2000).工業設計方法學. Beijing li gong da xue chu ban she.
    加藤邦宏 (1991)。企業形象革命 (藝風堂編輯部編譯)。台北:藝風堂。
    王受之 (2000)。世界現代平面設計。台北:藝術家。
    古明地正俊, 長谷佳明 (2020). AI大局: 鳥瞰人工智慧技術全貌,重塑AI時代的領導力. Tokyo Japan. 旗標出版
    朗濤設計顧問群 (1996)。朗濤設計顧問公司的 CI 經驗 (余友梅、高蘭馨譯)。台北:聯經
    金偉燦, & 莫伯尼. (2005). 藍海策略. 台北市: 天下遠見.(原作 2005 出版).
    侯純純, & 林品章. (2009). 企業識別系統設計方法與程序之研究. 設計學報 (Journal of Design), 13(4).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE