簡易檢索 / 詳目顯示

研究生: 李鎔羽
Li, Rong-Yu
論文名稱: 以高速影像測溫法解析微槽內爆震波之溫度分布
Resolving temperature distributions of detonation waves in narrow channels using high-speed imaging thermometry
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 88
中文關鍵詞: 爆震波溫度影像測溫法雙色測溫法
外文關鍵詞: detonation wave temperature, imaging pyrometry, two-color thermometry
相關次數: 點閱:57下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發了一套用於量測微槽內爆震波溫度分布之影像測溫法。藉由彩色高速攝影機獲得爆震波可見光範圍之原始影像經過校正與解算得到爆震波之溫度分布。並針對在不同當量比、管槽尺寸、燃料種類條件下之爆震波溫度分布進行比較,且擷取一維之整體平均溫度、中心軸溫度、邊界溫度及縱截面溫度分布進一步探討熱損之影響。研究結果說明爆震波在接近化學當量時有最高溫度且當量比越增加則溫度越低,與ZND及CEA理論之趨勢相同,但是在貧油端因燃料佔比較少,使得爆震波脫離灰體假設,導致溫度有高估之情形。在管槽尺寸影響方面,發現較窄之管槽尺寸下,因表面體積比增加而導致熱損增加使得爆震波溫度較低,後續隨著管槽尺寸增加而熱損越少,故溫度值越接近無考慮熱損之理論溫度值。而在三種不同碳氫比之乙炔、乙烯及丙烷燃料中,碳氫比最高之乙炔最接近灰體假設,因此獲得之溫度與CEA及ZND最為接近,同時在一維平均溫度分布中顯示乙炔高於乙烯及丙烷700 K左右,與ZND所預測之結果相似。同時藉由爆震波之縱截面溫度分布顯示了在任何條件下之爆震波都具有與ZND概念相同之誘導區及反應區,詮釋了未燃氣在誘導區受到震波壓縮加熱至約2000 K,後續進入反應區使得溫度進一步上升。且發現在0.25 cm截面處溫度邊界層開始產生,且隨著距離增加邊界層厚度亦增加,熱損之影響越嚴重。

    This research has developed a set of image imaging thermometry for measuring the temperature distribution of detonation waves in the microscale channel. The original image of the detonation is obtained by a color high-speed camera is calibrated and calculated to obtain the temperature distribution of the detonation wave. And compare the detonation wave temperature distributions under different equivalence ratios, channel size, and fuel types. The results show that the detonation wave has the highest temperature when it is close to the stoichiometric, and the higher the equivalence increases, the lower the temperature, which is the same trend as the ZND and CEA theory. But at the fuel lean, the proportion of fuel is less, which makes the detonation wave deviate from the gray body hypothesis, resulting in an overestimation of the temperature. In terms of the influence of the tube channel size, under a narrower channel size, the increase in heat loss due to the increase in the surface volume ratio makes the detonation wave temperature lower. Among the three fuels of with different carbon-hydrogen ratios, the acetylene with the highest carbon-hydrogen ratio is closest to the gray body hypothesis, and it is not affected by the boundary heat loss, so the temperature is very close to the theoretical value. Propane is the fuel is more severely affected by heat loss, making the temperature deviation larger than the other two, but the overall trend is similar to the theoretical value.

    摘要 I 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 縮寫列表 XIII 符號列表 XIV 第一章 緒論 1 1-1研究背景與動機 1 1-2文獻回顧 2 爆震波溫度模擬與量測 2 雙色測溫法於溫度之量測應用 3 影像測溫法於溫度量測之應用 4 校正方法 7 1-3研究目的 9 1-4本文架構 10 第二章 方法與原理 11 2-1溫度計算原理 11 2-2分析方法 12 爆震波原始影像提取 13 Gamma影像校正 13 相機彩色濾片響應曲線 15 輻射校準係數 16 Matlab溫度解算 17 2-3爆震波實驗方法 18 爆震管設計 18 質流量控制系統 19 皂泡式流量校正 21 點火系統 24 高速顯影系統 24 時序控制 25 實驗操作流程 27 2-4 ZND一維溫度預測方法 29 2-5 不確定性分析 31 第三章 影像測溫法驗證 36 3-1實驗設備及方法 36 本生燈平台設計 36 質流量控制系統 38 影像測溫法 38 雙色測溫法 39 熱電偶測溫 40 3-2結果驗證 40 第四章 爆震波溫度分布及誘導區長度 42 4-1當量比之影響 42 4-2管槽尺寸之影響 56 4-3燃料之影響 64 第五章 結論與未來展望 72 5-1結論 72 5-2未來展望 73 參考文獻 74 附錄A 影像測溫法之Matlab程式碼 77 附錄B 爆震管組件工程圖 79 附錄C 雙波長測溫法於微槽爆震波之應用 81 實驗設備與方法 81 實驗結果 82

    [1] M.H. Wu and T.H. Lu (2012), Development of a chemical microthruster based on pulsed detonation, Journal of Micromechanics and Microengineering 22(10), 105040.
    [2] J. Kasahara et al. (2019), Research and development of rotating detonation engine system for the sounding rocket flight experiment S520-31, 8th Bsme International Conference on Thermal Engineering 2121, 020001.
    [3] M.H. Wu and C.Y. Wang (2011), Reaction propagation modes in millimeter-scale tubes for ethylene/oxygen mixtures, Proceedings of the Combustion Institute 33(2), 2287-2293.
    [4] 王長禹,圓形截面微管內之預混焰傳遞模式解析,國立成功大學碩士論文,2010。
    [5] 詹弘凭,以高速schlieren顯影解析微槽內乙烯/氧氣預混焰加速及轉爆震波之動態,國立成功大學碩士論文,2017。
    [6] 斯豪偉,臭氧對窄槽內火焰加速及緩燃焰轉爆震波之影響,國立成功大學碩士論文,2019。
    [7] S.W. Grib, C.A. Fugger, P.S. Hsu, N. Jiang, S. Roy, and S.A. Schumaker (2021), Two-dimensional temperature in a detonation channel using two-color OH planar laser-induced fluorescence thermometry, Combustion and Flame 228, 259-276.
    [8] D.R. Richardson, S.P. Kearney, and D.R. Guildenbecher (2021), Post-detonation fireball thermometry via femtosecond-picosecond coherent anti-Stokes Raman Scattering (CARS), Proceedings of the Combustion Institute 38(1), 1657-1664.
    [9] D. W. Shaw and R. H. Essenhigh (1991), Temperature fluctuations in pulverized coal (P.C.) flames, Combustion and Flame 86, 333-346.
    [10] Y. Sun, C. Lou, and H. Zhou (2011), A simple judgment method of gray property of flames based on spectral analysis and the two-color method for measurements of temperatures and emissivity, Proceedings of the Combustion Institute 33(1), 735-741.
    [11] L. Shao, Z. Zhou, L. Chen, L. Guo, B. Chen, and L. Liang (2018), Study of an improved two-colour method integrated with the emissivity ratio model and its application to air- and oxy-fuel flames in industrial furnaces, Measurement 123, 54-61.
    [12] T. Furumoto, T. Ueda, M.R. Alkahari, and A. Hosokawa (2013), Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera, CIRP Annals 62(1), 223-226.
    [13] J. Han et al. (2020), In situ measurement of cutting edge temperature in turning using a near-infrared fiber-optic two-color pyrometer, Measurement 156, 107595.
    [14] J.M. Densmore, M.M. Biss, K.L. McNesby, and B.E. Homan (2011), High-speed digital color imaging pyrometry, Applied Optics 50, 2659-2665.
    [15] K.L. McNesby, B.E. Homan, R.A. Benjamin, V.M. Boyle, J.M. Densmore, and M.M. Biss (2016), Invited Article: Quantitative imaging of explosions with high-speed cameras, Review of Scientific Instruments 87(5), 051301.
    [16] B. Bizjan, B. Sirok, J. Drnovsek, and I. Pusnik (2015), Temperature measurement of mineral melt by means of a high-speed camera, Appl Opt 54(26), 7978-7984.
    [17] T.S. Draper, D. Zeltner, D.R. Tree, Y. Xue, and R. Tsiava (2012), Two-dimensional flame temperature and emissivity measurements of pulverized oxy-coal flames, Applied Energy 95, 38-44.
    [18] X. Zhang, X. Lu, Y. Yang, B. Zhang, and H. Xu (2018), Temperature measurement of coal fired flame in the cement kiln by raw image processing, Measurement 129, 471-478.
    [19] W. Yan, A. Panahi, and Y.A. Levendis (2020), Spectral emissivity and temperature of heated surfaces based on spectrometry and digital thermal imaging – Validation with thermocouple temperature measurements, Experimental Thermal and Fluid Science 112, 110017.
    [20] D.K. Kim and P.B. Sunderland (2019), Fire ember pyrometry using a color camera, Fire Safety Journal 106, 88-93.
    [21] W. Li, C. Lou, Y. Sun, and H. Zhou (2011), Estimation of radiative properties and temperature distributions in coal-fired boiler furnaces by a portable image processing system, Experimental Thermal and Fluid Science 35(2), 416-421.
    [22] Z.-W. Jiang, Z.-X. Luo, and H.-C. Zhou (2009), A simple measurement method of temperature and emissivity of coal-fired flames from visible radiation image and its application in a CFB boiler furnace, Fuel 88(6), 980-987.
    [23] C. Lou, H.-C. Zhou, P.-F. Yu, and Z.-W. Jiang (2007), Measurements of the flame emissivity and radiative properties of particulate medium in pulverized-coal-fired boiler furnaces by image processing of visible radiation, Proceedings of the Combustion Institute 31(2), 2771-2778.
    [24] C. Kostyk, T.K. Risch, B. Oswald-Tranta, and J.N. Zalameda (2020), Quantitative radiation thermometry using commercially available high-speed video cameras, Thermosense: Thermal Infrared Applications XLII, 114090.
    [25] P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, and M.B. Long (2011), Soot and thin-filament pyrometry using a color digital camera, Proceedings of the Combustion Institute 33(1), 743-750.
    [26] J. D. Maun, P. B. Sunderland, and D. L. Urban (2007), Thin-filament pyrometry with a digital still camera, Applied Optics 46(4), 483-488.
    [27] Y.B. Zel'dovich (1950), On the theory of the propagation of detonation in gaseous systems, NACA Technology, 1261.
    [28] J.v. Neumann (1942), Theory of detonation waves, John von Neumann collected works 6, 203-218.
    [29] W. Döring (1943), On the detonation processes in gases, Annals of Physics 43, 421-436.
    [30] V.Y. Gidaspov and N.S. Severina (2017), Numerical simulation of the detonation of a propane-air mixture, taking irreversible chemical reactions into account, High Temperature 55(5), 777-781.
    [31] N. Tsuboi, Y. Morii, and A. Koichi Hayashi (2013), Two-dimensional numerical simulation on galloping detonation in a narrow channel, Proceedings of the Combustion Institute 34(2), 1999-2007.
    [32] T. Araki, K. Yoshida, Y. Morii, N. Tsuboi, and A.K. Hayashi (2015), Numerical Analyses on Ethylene/Oxygen Detonation with Multistep Chemical Reaction Mechanisms: Grid Resolution and Chemical Reaction Model, Combustion Science and Technology 188(3), 346-369.
    [33] M. I. Radulescu, H. D. Ng, J. H.S.Lee, and B. Varatharajan (2002), The effect of argon dilution on the stability of acetylene/oxygen detonations, Proceedings of the Combustion Institute 29(2), 2825-2831.
    [34] C. de Izarra and J.-M. Gitton (2010), Calibration and temperature profile of a tungsten filament lamp, European Journal of Physics 31(4), 933-942.
    [35] Explosion Dynamics Laboratory, Shock and Detonation Toolbox – 2021 Version .
    [36] R. Mével, K. Chatelain, G. Blanquart, and J.E. Shepherd (2018), An updated reaction model for the high-temperature pyrolysis and oxidation of acetaldehyde, Fuel 217, 226-239.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE