| 研究生: |
許元瑋 Hsu, Yuan-Wei |
|---|---|
| 論文名稱: |
以分子動力學分析Cu-Al金屬玻璃阻障層與多晶銅間之擴散行為與機械性質 An Investigation on Diffusion Behavior and Mechanical Properties between Cu-Al Metallic Glass Diffusion Barrier and Polycrystalline Copper by Molecular Dynamics |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 分子動力學 、金屬玻璃 、擴散阻障層 、銅鋁合金 |
| 外文關鍵詞: | Molecular dynamics, metallic glasses, diffusion barrier, Cu-Al alloys |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子晶片的尺寸逐漸縮小,半導體前端晶圓製造方面面臨各式挑戰,後端電子封裝技術部分亦出現急需克服的屏障。例如電子封裝技術中銅與錫易於發生原子交互擴散行為,形成金屬間化合物及錫鬚晶,導致界面電阻率急劇升高進而使電子元件失效。本研究重點在於探討以銅鋁合金做為金屬玻璃阻障層與多晶銅間的擴散行為與機械性質。在理論模擬方法上,使用分子動力學模擬法與EAM勢能函數作為理論基礎,並配合開放式軟體LAMMPS作為工具,分析在不同系統溫度、冷卻速率及合金比例等條件下之銅鋁合金與多晶銅間的均方根位移、擴散系數及受單向拉伸時整體結構的應變分布、拉伸時空孔的破壞過程。
結果顯示擴散行為方面,金屬玻璃結構較晶態結構熱穩定性較佳,晶態結構於擴散模擬中在高溫時傾向出現急劇的擴散行為。擴散後剩餘非晶態結構比例越高之結構擁有最佳的擴散阻擋能力,因其不具有晶界等良好的擴散途徑;機械性質方面,金屬玻璃呈現較晶態結構差之機械強度,屬於較為延性的破壞行為。當上層晶態結構比例越高時,空孔破壞發生於銅鋁合金與多晶銅界面處,非晶態結構比例越高時,空孔破壞傾向發生於銅鋁金屬玻璃內部,此代表晶態結構機械強度較界面處及非晶態結構來的高。
With the gradual shrinkage of the size of electronic chip, there are a lot of challenges revealed in the semiconductor front-end process. In the same time, some problems should be apparently overcome in the back-end process, especially for electronic packaging. For example, copper atoms and tin atoms are susceptible to migrate and diffuse to each other, resulting in the formation of intermetallic compound (IMC) as well as tin whisker, which causes interface resistivity dramatically increasing and makes the components failed. In this thesis, the behavior of copper-aluminum (Cu-Al) alloys utilized as metallic glasses barrier was investigated. Moreover, not only the diffusion behavior but also the mechanical properties between the barrier and polycrystalline copper were evaluated and discussed. Molecular dynamics simulation was carried out by the program package LAMMPS with Embedded-Atom potential. We analyzed mean square displacement, diffusion coefficient, as well as the strain distribution of structure and the failure process during tensile test under the different condition, such as system temperature, cooling rate, molar ratio of alloys. The results show that, in terms of diffusion, the structure of metallic glasses has a great thermal stability compared with crystalline. Crystalline tends to reveal dramatic diffusion at the high temperature. It has the best barrier capability in the structure which possesses higher ratio of amorphous structure remained after diffusion because there is no boundaries as diffusion path. In respect of mechanical properties, metallic glasses perform weaker mechanical strength than crystalline, but better ductility. When the ratio of crystalline in barrier layer is high, pores shows up between the Cu-Al alloys and polycrystalline copper. In contrast, while the ratio of amorphous is high, pores would rather tend to appear in the interior of Cu-Al metallic glasses, which indicates that the mechanical strength of crystalline is stronger than that of the interface and that of amorphous.
[1] W. Klement, R. H. Willens, and P. Duwez, “Non-crystalline structure in solidified gold–silicon alloys”, Nature, Vol. 187, pp. 869-870, 1960.
[2] H. S. Chen, and D. Turnbull, “Formation, stability and structure of palladium-silicon based alloy glasses”, Acta Metallurgica, Vol. 17, No. 8, pp. 1021-1031, 1969.
[3] A. Inoue, T. Zhang, and T. Masumoto, “Al–La–Ni amorphous alloys with a wide supercooled liquid region”, Materials Transaction, Vol. 30, No. 12, pp. 965-972, 1989.
[4] A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transaction, Vol. 32, No. 7, pp. 609-616, 1991.
[5] XD. Hui, XJ. Liu, R. Gao, HY. Hou, HZ. Fang, ZK. Liu, and GL. Chen, “Atomic structures of Zr-based metallic glasses”, Science in china series g-physics mechanics & astronomy, Vol. 51, No. 4, pp. 400-413, 2008.
[6] P. H. Sung and T. C. Chen, “Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics”, Computational Materials Science, Vol. 114, pp. 13-17, 2016.
[7] A. Peker, and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, No. 17, pp. 2342-2344, 1993.
[8] S.Wolf, “Silicon processing for the VLSI Era”, Process Integration, Vol. 2, 1990.
[9] S. P. Murarka and S. W. Hymes, “Copper metallization for ULSL and beyond”, Critical Reviews in Solid State and Materials Sciences, Vol. 20, pp. 87-124, 1995.
[10] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, J. Vac. Sci. Technol. B, Vol. 14, pp. 3263-3269, 1996.
[11] W. Diyatmika, J. P. Chu, Y. W. Yen, W. Z. Chang, and C. H. Hsueh, ” Thin film metallic glass as an underlayer for tin whisker mitigation: A room-temperature evaluation”, Thin Solid Films, Vol. 561, pp. 93-97, 2014.
[12] W. Diyatmika, J. P. Chu, Y. W. Yen, and C. H. Hsueh, “Sn whisker mitigation by a thin metallic-glass underlayer in Cu-Sn”, Appl. Phys. Lett., Vol. 103, p. 241-912, 2013.
[13] J. E. Jones, “On the determination of molecular fields.”, Proceedings of the Royal Society A, Vol. 106, No. 738, pp. 441-462, 1924.
[14] C. Byrne, B. Brennan, R. Lundy, J. Bogan, A. Brady, Y.Y. Gomeniuk, S. Monaghan, P.K. Hurley, G. Hughes, “Physical, chemical and electrical characterisation of the diffusion of copper in silicon dioxide and prevention via a CuAl alloy barrier layer system”, Materials Science in Semiconductor Processing, Vol. 63, pp. 227-236, 2017.
[15] L. A. Girifalco, and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Physical Review, Vol. 114, pp. 687-690, 1959.
[16] J. E. Jones, “On the determination of molecular fields.”, Proceedings of the Royal Society A, Vol. 106, No. 738, pp. 441-462, 1924.
[17] J. E. Jones, “On the Determination of Molecular Fields - Ii from the Equation of State of a Gas”, Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, Vol. 106, pp. 463-477, 1924.
[18] J. E. Jones, 'On the Determination of Molecular Fields Iii - from Crystal Measurements and Kinetic Theory Data', Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, , Vol. 106, pp. 709-718, 1924.
[19] F. Cleri, and V. Rosato, 'Tight-Binding Potentials for Transition-Metals and Alloys', Physical Review B, Vol. 48, pp. 22-33, 1993.
[20] J. Tersoff, 'New Empirical-Approach for the Structure and Energy of Covalent Systems', Physical Review B, Vol. 37, pp.6991-7000, 1988.
[21] J. Tersoff, “Modeling Solid-State Chemistry - Interatomic Potentials for Multicomponent Systems”, Physical Review B, Vol. 39, pp. 5566-5568, 1989.
[22] M. S. Daw, S. M. Foiles, and M. I. Baskes, “The Embedded-Atom Method - a Review of Theory and Applications”, Materials Science Reports, Vol. 9, pp. 251-310, 1993.
[23] H. Ishida, S. Motoyama, K. Mae, and Y. Hiwatari, 'Molecular Dynamics Simulation of Martensitic Transformations in Nial Alloy Using the Modified Embedded Atom Method', Journal of the Physical Society of Japan, Vol. 72, pp. 2539-2545, 2003.
[24] C. H. Zhang, S. Huang, J. Shen, and N. X. Chen, 'Chen's Lattice Inversion Embedded-Atom Method for Ni-Al Alloy', Chinese Physics B, Vol. 21, p. 7, 2012.
[25] J. D. Honeycutt, and H. C. Andersen, 'Molecular-Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters', Journal of Physical Chemistry, Vol. 91, pp. 4950-4963, 1987.
[26] L. L. Lee, and J. M. Haile, 'Group Contribution Methods for Molecular Mixtures .1. Interaction Site Models', Fluid Phase Equilibria, Vol. 43, pp. 231-261, 1988.