| 研究生: |
卓怡如 Jhuo, Yi-Ru |
|---|---|
| 論文名稱: |
短期內受限於人力資源下X-bar管制圖之管制界限設定 Setting Control Limits of X-bar Control Chart Subjected to Short-term Human Resources |
| 指導教授: |
張裕清
Chang, Yu-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 品質管制 、管制圖 、人力資源限制 、經濟設計 、損失函數 |
| 外文關鍵詞: | Quality control, Control chart, Human resource constraint, Loss-cost function |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Duncan首先將成本的概念加入管制圖的設計,並於1956年發表 經濟設計管制圖,此後許多學者分別針對不同類型的管制圖提出經濟設計模型。Wu et al.於2006年首先將人力配置的議題加入管制圖的經濟設計,藉由事前優化監控管制圖所需的人力,達到成本的降低。然而經濟設計是在長期的架構下重新設計管制圖,短期內若對管制圖的設計做大幅度的改變可能會導致成本的提升,且過去經濟設計的相關研究主要為監控單張管制圖的情況,實際工廠營運時通常為多條生產線同時運作,也就是同時監控多張管制圖的情況。
本研究建構一套管制界限的設定方法,當短期內監控管制圖的人力資源有限,又要同時監控多張管制圖的情況下,該如何針對管制界限調整。損失成本函數參考Duncan的經濟設計模型,包括(1)製程在可歸屬變異發生後繼續運作的額外成本(2)製程處於穩定狀態時搜尋錯誤警告的成本(3)製程處於失控狀態時搜尋可歸屬原因的成本(4)維護管制圖的成本;透過總成本對管制界限做一階微分並令其為零的方式求得能夠使總成本最小化之管制界限值。另外,由於工程師在處理發出異常警訊之管制圖時式採取先進先處理的策略,因此發出異常警訊之管制圖的等候時間以M/M/c queue模型建構。研究結果顯示,透過管制界限的調整可以避免成本的上升,達到品質管制與成本控制的目的。根據敏感度分析可以發現抽樣間隔時間、工程師單位時間可以處理的管制圖數量及處理發出異常警訊之管制圖一單位時間產生的成本有較大之影響,因此未來應用此模型於工廠實際運作之企業可以更加注意此部分之變化。
The economic design of control charts have received considerable attention since Duncan first proposed the economic design of control charts in 1956. Wu et al. proposed a methodology for deploying manpower to a statistical process control scheme in order to minimize the expected total cost. The concept of economic design is to construct control charts from a long-term perspective; however, changing control chart parameters may cause cost rising in the short term. In this thesis, we develop a methodology for setting control limits of control charts, subject to short-term human resources for monitoring multiple control charts. The objective of this design is to minimize the total cost per production cycle, as a result, we use Duncan cost function for economic design as well as M/M/C queue model for human resources construction. Results of numerical studies show that cost can be reduced by setting appropriate control limits. Finally, a sensitivity analysis has been performed to evaluate how the parameters influence the total cost per unit time.
Amiri, A., Moslemi, A., & Doroudyan, M. H. (2015). Robust economic and economic-statistical design of EWMA control chart. The International Journal of Advanced Manufacturing Technology, 78(1-4), 511-523.
Avinadav, T., Perlman, Y., & Cheng, T. C. E. (2016). Economic design of control charts for monitoring batch manufacturing processes. International Journal of Computer Integrated Manufacturing, 29(2), 212-221.
Banerjee, P. K., & Rahim, M. A. (1988). Economic design of–control charts under weibull shock models. Technometrics, 30(4), 407-414.
Chen, Y. S., & Yang, Y. M. (2002). An extension of Banerjee and Rahim's model for economic design of moving average control chart for a continuous flow process. European Journal of Operational Research, 143(3), 600-610.
Chiu, W. C. (2015). Economic-statistical design of EWMA control charts based on Taguchi's loss function. Communications in Statistics-Simulation and Computation, 44(1), 137-153.
Chiu, W. K. (1974). The economic design of CUSUM charts for controlling normal means. Applied Statistics, 420-433.
Chiu, W. K. (1975). Economic design of attribute control charts. Technometrics, 17(1), 81-87.
Chiu, W. K. (1976). Economic design of np charts for processes subject to a multiplicity of assignable causes. Management Science, 23(4), 404-411.
Chung, K. J. (1994). An algorithm for computing the economically optimal X-control chart for a process with multiple assignable causes. European Journal of Operational Research, 72(2), 350-363.
Costa, A. F. (1999). Joint X and R charts with variable sample sizes and sampling intervals. Journal of Quality Technology, 31(4), 387.
Costa, A. F., & Rahim, M. A. (2001). Economic design of X charts with variable parameters: the Markov chain approach. Journal of Applied Statistics, 28(7), 875-885.
Duncan, A. J. (1956). The economic design of X charts used to maintain current control of a process. Journal of the American Statistical Association, 51(274), 228-242.
Duncan, A. J. (1971). The economic design of-charts when there is a multiplicity of assignable causes. Journal of the American Statistical Association, 66(333), 107-121.
Franco, B. C., Celano, G., Castagliola, P., & Costa, A. F. B. (2014). Economic design of Shewhart control charts for monitoring autocorrelated data with skip sampling strategies. International Journal of Production Economics, 151, 121-130.
Gibra, I. N. (1971). Economically optimal determination of the parameters of X-control chart. Management Science, 17(9), 635-646.
Goel, A. L., & Wu, S. M. (1973). Economically optimum design of CUSUM charts. Management Science, 19(11), 1271-1282.
Goel, A. L., Jain, S. C., & Wu, S. M. (1968). An Algorithm for the Determination of the Economic Design of-Charts Based on Duncan's Model. Journal of the American Statistical Association, 63(321), 304-320.
Ho, C., & Case, K. E. (1994). The economically-based EWMA control chart. International Journal of Production Research, 32(9), 2179-2186.
Jiao, J. R., & Helo, P. T. (2008). Optimization design of a CUSUM control chart based on Taguchi’s loss function. The international journal of advanced manufacturing technology, 35(11), 1234-1243.
KOO, T. Y., & CASE, K. E. (1990). Economic design of X-bar control charts for use in monitoring continuous flow processes. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 28(11), 2001-2011.
Kooli, I., & Limam, M. (2015). Economic design of attribute np control charts using a variable sampling policy. Applied Stochastic Models in Business and Industry, 31(4), 483-494.
Lorenzen, T. J., & Vance, L. C. (1986). The economic design of control charts: a unified approach. Technometrics, 28(1), 3-10.
Montgomery, D. C. (2009). Introduction to statistical quality control. John Wiley & Sons (New York).
Naderi, M. H., Moghadam, M. B., & Seif, A. (2018). Economic statistical design of the T 2 control chart under the Weibull shock model with multiple assignable causes. Journal of Statistical Computation and Simulation, 88(1), 1-27.
Nenes, G., & Panagiotidou, S. (2013). An adaptive Bayesian scheme for joint monitoring of process mean and variance. Computers & Operations Research, 40(11), 2801-2815.
Ohta, H., & Rahim, M. A. (1997). A dynamic economic model for an X-control chart design. IIE transactions, 29(6), 481-486.
Park, C., Lee, J., & Kim, Y. (2004). Economic design of a variable sampling rate EWMA chart. IIE Transactions, 36(5), 387-399.
Saghaei, A., Fatemi Ghomi, S. M. T., & Jaberi, S. (2014). Economic design of exponentially weighted moving average control chart based on measurement error using genetic algorithm. Quality and Reliability Engineering International, 30(8), 1153-1163.
Salmasnia, A., Abdzadeh, B., & Namdar, M. (2017). A joint design of production run length, maintenance policy and control chart with multiple assignable causes. Journal of manufacturing systems, 42, 44-56.
Saniga, E. M. (1977). Joint economically optimal design of X and R control charts. Management Science, 24(4), 420-431.
Saniga, E. M., Davis, D., McWilliams, T., & Lucas, J. (2016). Statistical CUSUM designs with minimum sampling cost. Quality Technology & Quantitative Management, 1-9.
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to and R charts. Technometrics, 31(3), 313-320.
Serel, D. A., & Moskowitz, H. (2008). Joint economic design of EWMA control charts for mean and variance. European Journal of Operational Research, 184(1), 157-168.
Shamsuzzaman, M., Wu, Z., & Elias, M. R. U. S. (2009). Designs of X¯ &S control charts with optimal manpower deployment. Computers & Industrial Engineering, 56(4), 1589-1596.
Tagaras, G., & Lee, H. L. (1988). Economic design of control charts with different control limits for different assignable causes. Management Science, 34(11), 1347-1366.
Tasias, K. A., & Nenes, G. (2016). Economic− statistical design of Vp control schemes for joint monitoring of mean and variance in the presence of multiple assignable causes. Quality Technology & Quantitative Management, 1-23.
Taylor, H. M. (1968). The economic design of cumulative sum control charts. Technometrics, 10(3), 479-488.
Woodall, W. H. (1986). Weaknesses of the economic design of control charts. Technometrics, 28(4), 408-409.
Wu, Z., Shamsuzzaman, M., & Wang, Q. (2006). Designs of control charts with optimal manpower deployment. International Journal of Production Research, 44(11), 2119-2132.
Wu, Z., Shamsuzzaman, M., & Wang, Q. (2007). The cost minimization and manpower deployment to SPC in a multistage manufacturing system. International Journal of Production Economics, 106(1), 275-287.
Yu, F. J., & Chen, Y. S. (2005). An Economic design for a variable-sampling-interval control chart for a continuous-flow process. The International Journal of Advanced Manufacturing Technology, 25(3), 370-376.
余豐榮, 劉亮成, & 黃開義. (2007). 多變異製程移動平均管制圖之統計經濟設計. Journal of Science and Engineering Technology, 3(2), 1-9.
蘇珈儀(2011). 具有多項異常原因之 X-bar 管制圖經濟設計 國立交通大學博士論文