| 研究生: |
馬欣蒂 Ma, Xin-Di |
|---|---|
| 論文名稱: |
加速新生嬰兒腦部分割:利用多模態數據的深度學習方法 Accelerating Neonatal Brain Segmentation: A Deep Learning Approach Using Multimodality Data |
| 指導教授: |
許志仲
Hsu, Chin-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 數據科學研究所 Institute of Data Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 深度學習 、新生兒 、腦 、分割 、MRI |
| 外文關鍵詞: | Deep Learning, Neonate, Brain, Segmentation, MRI |
| 相關次數: | 點閱:66 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
新生兒腦部結構的形態測量分析對於認知與表達能力的發育中作為重要的評估指標,在臨床研究中,依據解剖特徵將大腦進行細緻、明確的分類分區,用以評估不同區域中功能性的意義與影響。為了達到精細的分割結果,現有研究團隊主要針對新生兒腦部核磁共振成像(Magnetic Resonance Imaging, MRI)影像為主的基於圖譜分割方法(例如:dHCP),在於面對不同醫院收錄的 MRI,容易受到掃描設定、出生週數和影像品質等差異造成分割誤差,並且一套完整的分割流程將會花費大量時間,即使在前期分割過程中產生了分割錯誤,也無法中止後續的皮質灰質表面重建流程。除此之外,現有的深度學習方法,雖然通過神經網路減少了運算與時間成本,卻只能分割粗略的腦區,影響後續發育評估分析,而也未有分割模型應用於跨數據集(如:早產與足月嬰兒)。因此本研究中,我們提出了一種基於深度學習的分層式細節網路(Hierarchical Detail Network, HiDeNet)來解決基於圖譜分割方法的缺陷,同時多腦區分割的目標。首先,選用高品質的足月兒 MRI 影像作為訓練數據,而將低品質、低解析度的早產兒 MRI 影像用於推理。為了提高模型對早產兒資料集的應用性,我們在訓練過程中對高品質影像進行隨機數據增強,模擬掃描過程中可能產生的問題(包括假影與晃動),以增強模型對低品質影像的適應能力。接著,藉由 U-Net 的骨幹網路達到分層式分割,第一個網路透過 MRI 影像學習腦區組織資訊有效地用於後續輸入特徵,第二個網路則是分割出 87 個腦區結構。推理部分通過過客制化處理去除多餘骨骼與影像強度歸一化,減少測試資料的品質問題,並透過補丁式(Patch-based)推理完成每個案例的分割。為了證明 HiDeNet 的性能,使用了兩種不同的數據集與多個先進的深度學習方法進行相比,結果表明,與現有方法相比,我們的方法實現了更高的分割準確率與穩定性,且表示 HiDeNet 分割的腦區結果能應用於實際分析算法中。
Neonatal brain morphometrics are crucial for evaluating cognitive and expressive development. Current atlas-based methods, such as Developing Human Connectome Project (dHCP) structural pipeline, for brain magnetic resonance imaging (MRI) segmentation often face challenges due to variable scan settings and quality, leading to errors and a time-consuming process. Existing deep learning approaches, while faster, often fail to provide detailed segmentation necessary for developmental assessments and typically don't cater to diverse datasets, e.g., preterm and full-term infants. In response, this study introduces the hierarchical detail network (HiDeNet), a deep learning-based solution that overcomes these limitations by providing layered, detailed segmentation across different datasets. HiDeNet trains on high-quality full-term MRI images and infers on lower quality, preterm images, incorporating random data augmentation to simulate and adapt to scanning issues. It employs a U-Net backbone to learn from broad to fine brain region features, ensuring accurate segmentation of 87 brain structures. Customized preprocessing modules and patch-based inference further enhance its adaptability and accuracy across datasets. Our comparisons with other advanced methods using diverse datasets demonstrate HiDeNet's superior segmentation accuracy and stability, making it a robust tool for neonatal brain analysis and further research.
[1] Anbeek, Petronella, Vincken, Koen L, Groenendaal, Floris, Koeman, Annemieke, Van Osch, Matthias JP, & Van der Grond, Jeroen. 2008. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging. Pediatric research, 63(2), 158–163.
[2] Bozek, Jelena, Makropoulos, Antonios, Schuh, Andreas, Fitzgibbon, Sean, Wright, Robert, Glasser, Matthew F, Coalson, Timothy S, O’Muircheartaigh, Jonathan, Hutter, Jana, Price, Anthony N, et al. 2018. Construction of a neonatal cortical surface atlas using multimodal surface matching in the developing human connectome project. NeuroImage, 179, 11–29.
[3] Carré, Alexandre, Klausner, Guillaume, Edjlali, Myriam, Lerousseau, Marvin, BriendDiop, Jade, Sun, Roger, Ammari, Samy, Reuzé, Sylvain, Alvarez Andres, Emilie, Estienne, Théo, et al. 2020. Standardization of brain MR images across machines and protocols:bridging the gap for MRI-based radiomics. Scientific reports, 10(1), 12340.
[4] Celik, Gaffari, & Talu, Muhammed Fatih. 2022. A new 3D MRI segmentation method based on Generative Adversarial Network and Atrous Convolution. Biomedical Signal Processing and Control, 71, 103155.
[5] Chen, Liangjun, Wu, Zhengwang, Zhao, Fenqiang, Wang, Ya, Lin, Weili, Wang, Li, & Li, Gang. 2023. An attention-based context-informed deep framework for infant brain subcortical segmentation. NeuroImage, 269, 119931.
[6] Chen, Sihong, Ma, Kai, & Zheng, Yefeng. 2019a. Med3d: Transfer learning for 3d medical image analysis. arXiv preprint arXiv:1904.00625.
[7] Chen, Wei, Liu, Boqiang, Peng, Suting, Sun, Jiawei, & Qiao, Xu. 2019b. S3D-UNet: separable 3D U-Net for brain tumor segmentation. Pages 358–368 of: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers, Part II 4. Springer.
[8] Christian, Eisha A, Jin, Diana L, Attenello, Frank, Wen, Timothy, Cen, Steven, Mack, William J, Krieger, Mark D, & McComb, J Gordon. 2016. Trends in hospitalization of preterm infants with intraventricular hemorrhage and hydrocephalus in the United States, 2000–2010. Journal of Neurosurgery: Pediatrics, 17(3), 260–269.
[9] Çiçek, Özgün, Abdulkadir, Ahmed, Lienkamp, Soeren S, Brox, Thomas, & Ronneberger, Olaf. 2016. 3D U-Net: learning dense volumetric segmentation from sparse annotation. Pages 424–432 of: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II 19. Springer.
[10] Cordero-Grande, Lucilio, Teixeira, Rui Pedro AG, Hughes, Emer J, Hutter, Jana, Price, Anthony N, & Hajnal, Joseph V. 2016. Sensitivity encoding for aligned multishot magnetic resonance reconstruction. IEEE Transactions on Computational Imaging, 2(3), 266–280.
[11] Coupé, Pierrick, Mansencal, Boris, Clément, Michaël, Giraud, Rémi, de Senneville, Baudouin Denis, Ta, Vinh-Thong, Lepetit, Vincent, & Manjon, José V. 2020. AssemblyNet: A large ensemble of CNNs for 3D whole brain MRI segmentation. NeuroImage, 219, 117026.
[12] Dai, Yakang, Shi, Feng, Wang, Li, Wu, Guorong, & Shen, Dinggang. 2013. iBEAT: a toolbox for infant brain magnetic resonance image processing. Neuroinformatics, 11, 211–225.
[13] Daliri, M, Moghaddam, H Abrishami, Ghadimi, S, Momeni, M, Harirchi, F, & Giti, M. 2010. Skull segmentation in 3D neonatal MRI using hybrid Hopfield Neural Network. Pages 4060–4063 of: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE.
[14] De Haan, Michelle, & Nelson, Charles A. 1997. Recognition of the mother’s face by six-month-old infants: A neurobehavioral study. Child development, 68(2), 187–210.
[15] de Macedo Rodrigues, Katyucia, Ben-Avi, Emma, Sliva, Danielle D, Choe, Myong-sun, Drottar, Marie, Wang, Ruopeng, Fischl, Bruce, Grant, Patricia E, & Zöllei, Lilla. 2015. A FreeSurfer-compliant consistent manual segmentation of infant brains spanning the 0–2 year age range. Frontiers in human neuroscience, 9, 21.
[16] Dehaene-Lambertz, Ghislaine, & Pena, Marcela. 2001. Electrophysiological evidence for automatic phonetic processing in neonates. Neuroreport, 12(14), 3155–3158.
[17] Devi, Chelli N, Chandrasekharan, Anupama, Sundararaman, VK, & Alex, Zachariah C. 2015. Neonatal brain MRI segmentation: A review. Computers in biology and medicine, 64, 163–178.
[18] Dimitrova, Ralica, Arulkumaran, Sophie, Carney, Olivia, Chew, Andrew, Falconer, Shona, Ciarrusta, Judit, Wolfers, Thomas, Batalle, Dafnis, Cordero-Grande, Lucilio, Price, Anthony N, et al. 2021. Phenotyping the preterm brain: characterizing individual deviations from normative volumetric development in two large infant cohorts. Cerebral cortex, 31(8), 3665–3677.
[19] Dolz, Jose, Gopinath, Karthik, Yuan, Jing, Lombaert, Herve, Desrosiers, Christian, & Ayed, Ismail Ben. 2018. HyperDense-Net: a hyper-densely connected CNN for multimodal image segmentation. IEEE transactions on medical imaging, 38(5), 116–1126.
[20] Fischl, Bruce. 2012. FreeSurfer. Neuroimage, 62(2), 774–781.
[21] Gerig, Guido, Kubler, Olaf, Kikinis, Ron, & Jolesz, Ferenc A. 1992. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on medical imaging, 11(2), 221–232.
[22] Ghadimi, S, Abrishami-Moghaddam, H, Kazemi, K, Grebe, R, Goundry-Jouet, C, & Wallois, F. 2008. Segmentation of scalp and skull in neonatal MR images using probabilistic atlas and level set method. Pages 3060–3063 of: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE.
[23] Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, Xu, Bing, Warde-Farley, David, Ozair, Sherjil, Courville, Aaron, & Bengio, Yoshua. 2020. Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
[24] Gousias, Ioannis S, Edwards, A David, Rutherford, Mary A, Counsell, Serena J, Hajnal, Jo V, Rueckert, Daniel, & Hammers, Alexander. 2012. Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. Neuroimage, 62(3), 1499–1509.
[25] Gousias, Ioannis S, Hammers, Alexander, Counsell, Serena J, Srinivasan, Latha, Rutherford, Mary A, Heckemann, Rolf A, Hajnal, Jo V, Rueckert, Daniel, & Edwards, A David. 2013. Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PloS one, 8(4), e59990.
[26] Gui, Laura, Lisowski, Radoslaw, Faundez, Tamara, Hüppi, Petra S, Lazeyras, François, & Kocher, Michel. 2012. Morphology-driven automatic segmentation of MR images of the neonatal brain. Medical image analysis, 16(8), 1565–1579.
[27] Hatamizadeh, Ali, Tang, Yucheng, Nath, Vishwesh, Yang, Dong, Myronenko, Andriy, Landman, Bennett, Roth, Holger R, & Xu, Daguang. 2022. Unetr: Transformers for 3d medical image segmentation. Pages 574–584 of: Proceedings of the IEEE/CVF winter conference on applications of computer vision.
[28] Huang, Huimin, Lin, Lanfen, Tong, Ruofeng, Hu, Hongjie, Zhang, Qiaowei, Iwamoto, Yutaro, Han, Xianhua, Chen, Yen-Wei, & Wu, Jian. 2020. Unet 3+: A full-scale connected unet for medical image segmentation. Pages 1055–1059 of: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE.
[29] Hughes, Emer J, Winchman, Tobias, Padormo, Francesco, Teixeira, Rui, Wurie, Julia, Sharma, Maryanne, Fox, Matthew, Hutter, Jana, Cordero-Grande, Lucilio, Price, Anthony N, et al. 2017. A dedicated neonatal brain imaging system. Magnetic resonance in medicine, 78(2), 794–804.
[30] Huo, Yuankai, Xu, Zhoubing, Xiong, Yunxi, Aboud, Katherine, Parvathaneni, Prasanna, Bao, Shunxing, Bermudez, Camilo, Resnick, Susan M, Cutting, Laurie E, & Landman, Bennett A. 2019. 3D whole brain segmentation using spatially localized atlas network tiles. NeuroImage, 194, 105–119.
[31] Isensee, Fabian, Jaeger, Paul F, Kohl, Simon AA, Petersen, Jens, & Maier-Hein, Klaus H. 2021. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203–211.
[32] Jenkinson, Mark, Beckmann, Christian F, Behrens, Timothy EJ, Woolrich, Mark W, & Smith, Stephen M. 2012. Fsl. Neuroimage, 62(2), 782–790.
[33] Kazemi, Kamran, Moghaddam, Hamid Abrishami, Grebe, Reinhard, Gondry-Jouet, Catherine, & Wallois, Fabrice. 2007. A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: preliminary results. Neuroimage, 37(2), 463–473.
[34] Lafferty, John, McCallum, Andrew, & Pereira, Fernando CN. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
[35] Laiton-Bonadiez, Camilo, Sanchez-Torres, German, & Branch-Bedoya, John. 2022. Deep 3d neural network for brain structures segmentation using self-attention modules in mri images. Sensors, 22(7), 2559.
[36] Li, Gang, Wang, Li, Shi, Feng, Gilmore, John H, Lin, Weili, & Shen, Dinggang. 2015. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications. Medical image analysis, 25(1), 22–36.
[37] Li, Wenqi, Wang, Guotai, Fidon, Lucas, Ourselin, Sebastien, Cardoso, M Jorge, & Vercauteren, Tom. 2017. On the compactness, efficiency, and representation of 3D convolutional networks: brain parcellation as a pretext task. Pages 348–360 of: Information Processing in Medical Imaging: 25th International Conference, IPMI 2017, Boone, NC, USA, June 25-30, 2017, Proceedings 25. Springer.
[38] Li, Yeshu, Cui, Jonathan, Sheng, Yilun, Liang, Xiao, Wang, Jingdong, Eric, I, Chang, Chao, & Xu, Yan. 2021. Whole brain segmentation with full volume neural network. Computerized Medical Imaging and Graphics, 93, 101991.
[39] Li, Zhan, Zhang, Chunxia, Zhang, Yongqin, Wang, Xiaofeng, Ma, Xiaolong, Zhang, Hai, & Wu, Songdi. 2023. CAN: Context-assisted full Attention Network for brain tissue segmentation. Medical Image Analysis, 85, 102710.
[40] Liu, Ze, Lin, Yutong, Cao, Yue, Hu, Han, Wei, Yixuan, Zhang, Zheng, Lin, Stephen, & Guo, Baining. 2021. Swin transformer: Hierarchical vision transformer using shifted windows. Pages 10012–10022 of: Proceedings of the IEEE/CVF international conference on computer vision.
[41] Mahapatra, Dwarikanath. 2012. Skull stripping of neonatal brain MRI: using prior shape information with graph cuts. Journal of digital imaging, 25, 802–814.
[42] Makropoulos, Antonios, Gousias, Ioannis S, Ledig, Christian, Aljabar, Paul, Serag, Ahmed, Hajnal, Joseph V, Edwards, A David, Counsell, Serena J, & Rueckert, Daniel. 2014. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE transactions on medical imaging, 33(9), 1818–1831.
[43] Makropoulos, Antonios, Robinson, Emma C, Schuh, Andreas, Wright, Robert, Fitzgibbon, Sean, Bozek, Jelena, Counsell, Serena J, Steinweg, Johannes, Vecchiato, Katy, Passerat-Palmbach, Jonathan, et al. 2018. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage, 173, 88–112.
[44] Mangin, J-F. 2000. Entropy minimization for automatic correction of intensity nonuniformity. Pages 162–169 of: Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No. PR00737). IEEE.
[45] Mehta, Raghav, & Sivaswamy, Jayanthi. 2017. M-net: A convolutional neural network for deep brain structure segmentation. Pages 437–440 of: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017). IEEE.
[46] Milletari, Fausto, Navab, Nassir, & Ahmadi, Seyed-Ahmad. 2016. V-net: Fully convolutional neural networks for volumetric medical image segmentation. Pages 565–571 of: 2016 fourth international conference on 3D vision (3DV). Ieee.
[47] Murgasova, Maria, Srinivasan, Latha, Gousias, Ioannis S, Aljabar, Paul, Hajnal, Joseph V, Edwards, A David, & Rueckert, Daniel. 2010. Construction of a dynamic 4D probabilistic atlas for the developing brain. Pages 952–955 of: 2010 IEEE international symposium on biomedical imaging: from nano to macro. IEEE.
[48] Nyúl, László G, Udupa, Jayaram K, & Zhang, Xuan. 2000. New variants of a method of MRI scale standardization. IEEE transactions on medical imaging, 19(2), 143–150.
[49] Payer, Christian, Štern, Darko, Bischof, Horst, & Urschler, Martin. 2018. Multilabel whole heart segmentation using CNNs and anatomical label configurations. Pages 190–198 of: Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges: 8th International Workshop, STACOM 2017, Held in Conjunction with MICCAI 2017, Quebec City, Canada, September 10-14, 2017, Revised Selected Papers. Springer.
[50] Péporté, Michele, Ilea Ghita, Dana E, Twomey, Eilish, & Whelan, Paul F. 2011. A hybrid approach to brain extraction from premature infant MRI. Pages 719–730 of: Image Analysis: 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May 2011. Proceedings 17. Springer.
[51] Pérez-García, Fernando, Sparks, Rachel, & Ourselin, Sébastien. 2021. TorchIO: a Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine, 208, 106236.
[52] Perona, Pietro, & Malik, Jitendra. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on pattern analysis and machine intelligence, 12(7), 629–639.
[53] Peterson, Bradley S, Anderson, Adam W, Ehrenkranz, Richard, Staib, Lawrence H, Tageldin, Magdi, Colson, Eve, Gore, John C, Duncan, Charles C, Makuch, Robert, & Ment, Laura R. 2003. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics, 111(5), 939–948.
[54] Prastawa, Marcel, Gilmore, John H, Lin, Weili, & Gerig, Guido. 2005. Automatic segmentation of MR images of the developing newborn brain. Medical image analysis, 9(5), 457–466.
[55] Qamar, Saqib, Jin, Hai, Zheng, Ran, & Ahmad, Parvez. 2019. Multi stream 3D hyperdensely connected network for multi modality isointense infant brain MRI segmentation. Multimedia Tools and Applications, 78, 25807–25828.
[56] Ronneberger, Olaf, Fischer, Philipp, & Brox, Thomas. 2015. U-net: Convolutional networks for biomedical image segmentation. Pages 234–241 of: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer.
[57] Roy, Abhijit Guha, Conjeti, Sailesh, Navab, Nassir, Wachinger, Christian, Initiative, Alzheimer’s Disease Neuroimaging, et al. 2019. QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage, 186, 713–727.
[58] Shattuck, David W, Sandor-Leahy, Stephanie R, Schaper, Kirt A, Rottenberg, David A, & Leahy, Richard M. 2001. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13(5), 856–876.
[59] Shi, Feng, Fan, Yong, Tang, Songyuan, Gilmore, John H, Lin, Weili, & Shen, Dinggang. 2010. Neonatal brain image segmentation in longitudinal MRI studies. Neuroimage, 49(1), 391–400.
[60] Shi, Feng, Shen, Dinggang, Yap, Pew-Thian, Fan, Yong, Cheng, Jie-Zhi, An, Hongyu, Wald, Lawrence L, Gerig, Guido, Gilmore, John H, & Lin, Weili. 2011a. CENTS: cortical enhanced neonatal tissue segmentation. Human brain mapping, 32(3), 382–396.
[61] Shi, Feng, Yap, Pew-Thian, Wu, Guorong, Jia, Hongjun, Gilmore, John H, Lin, Weili, & Shen, Dinggang. 2011b. Infant brain atlases from neonates to 1-and 2-year-olds. PloS one, 6(4), e18746.
[62] Simion, Francesca, Valenza, Eloisa, Umilta, Carlo, & Barba, Beatrice Dalla. 1998. Preferential orienting to faces in newborns: A temporal–nasal asymmetry. Journal of Experimental Psychology: Human perception and performance, 24(5), 1399.
[63] Sled, John G, Zijdenbos, Alex P, & Evans, Alan C. 1998. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE transactions on medical imaging, 17(1), 87–97.
[64] Smith, Stephen M. 2002. Fast robust automated brain extraction. Human brain mapping, 17(3), 143–155.
[65] Srhoj-Egekher, Vedran, Benders, MJNL, Kersbergen, Karina J, Viergever, Max A, & Isgum, I. 2012. Automatic segmentation of neonatal brain MRI using atlas based segmentation and machine learning approach. MICCAI Grand Challenge: Neonatal Brain Segmentation, 2012.
[66] Tustison, Nicholas J, Avants, Brian B, Cook, Philip A, Zheng, Yuanjie, Egan, Alexander, Yushkevich, Paul A, & Gee, James C. 2010. N4ITK: improved N3 bias correction. IEEE transactions on medical imaging, 29(6), 1310–1320.
[67] Tzourio-Mazoyer, Nathalie, Landeau, Brigitte, Papathanassiou, Dimitri, Crivello, Fabrice, Etard, Octave, Delcroix, Nicolas, Mazoyer, Bernard, & Joliot, Marc. 2002a. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273–289.
[68] Tzourio-Mazoyer, Nathalie, De Schonen, Scania, Crivello, Fabrice, Reutter, Bryan, Aujard, Yannick, & Mazoyer, Bernard. 2002b. Neural correlates of woman face processing by 2-month-old infants. Neuroimage, 15(2), 454–461.
[69] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan N, Kaiser, Łukasz, & Polosukhin, Illia. 2017. Attention is all you need. Advances in neural information processing systems, 30.
[70] Wang, Li, Wu, Zhengwang, Chen, Liangjun, Sun, Yue, Lin, Weili, & Li, Gang. 2023. iBEAT V2. 0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction. Nature Protocols, 18(5), 1488–1509.
[71] Weisenfeld, Neil I, & Warfield, Simon K. 2009. Automatic segmentation of newborn brain MRI. Neuroimage, 47(2), 564–572.
[72] Wu, Yuxin, & He, Kaiming. 2018. Group normalization. Pages 3–19 of: Proceedings of the European conference on computer vision (ECCV).
[73] Xue, Hui, Srinivasan, Latha, Jiang, Shuzhou, Rutherford, Mary, Edwards, A David, Rueckert, Daniel, & Hajnal, Joseph V. 2007. Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage, 38(3), 461–477.
[74] Yu, Xinhua, Chen, Junxin, Fang, Bo, Wang, Wei, Zhang, Li-bo, & Lv, Zhihan. 2021. Cardiac LGE MRI segmentation with cross-modality image augmentation and improved U-Net. IEEE journal of biomedical and health informatics.
[75] Yu, Xintian, Zhang, Yanjie, Lasky, Robert E, Datta, Sushmita, Parikh, Nehal A, & Narayana, Ponnada A. 2010. Comprehensive brain MRI segmentation in high risk preterm newborns. PloS one, 5(11), e13874.
[76] Zhang, Lan, Zhang, Kejia, & Pan, Haiwei. 2023. SUNet++: A Deep Network with Channel Attention for Small-Scale Object Segmentation on 3D Medical Images. Tsinghua Science and Technology, 28(4), 628–638.
[77] Zhang, Shengjie, Ren, Bohan, Yu, Ziqi, Yang, Haibo, Han, Xiaoyang, Chen, Xiang, Zhou, Yuan, Shen, Dinggang, & Zhang, Xiao-Yong. 2022. TW-Net: TransformerWeighted Network for Neonatal Brain MRI Segmentation. IEEE Journal of Biomedical and Health Informatics.
[78] Zhang, Yichi, Yuan, Lin, Wang, Yujia, & Zhang, Jicong. 2020. SAU-Net: Efficient 3D spine MRI segmentation using inter-slice attention. Pages 903–913 of: Medical Imaging with Deep Learning. PMLR.
[79] Zhang, Zhengxin, Liu, Qingjie, & Wang, Yunhong. 2018. Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.
[80] Zhang, Zhenxi, Li, Jie, Tian, Chunna, Zhong, Zhusi, Jiao, Zhicheng, & Gao, Xinbo. 2021. Quality-driven deep active learning method for 3D brain MRI segmentation. Neurocomputing, 446, 106–117.
[81] Zhou, Zongwei, Rahman Siddiquee, Md Mahfuzur, Tajbakhsh, Nima, & Liang, Jianming. 2018. Unet++: A nested u-net architecture for medical image segmentation. Pages 3–11 of: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4. Springer.
[82] Zhu, Zhiqin, He, Xianyu, Qi, Guanqiu, Li, Yuanyuan, Cong, Baisen, & Liu, Yu. 2023. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI. Information Fusion, 91, 376–387.
[83] Zöllei, Lilla, Iglesias, Juan Eugenio, Ou, Yangming, Grant, P Ellen, & Fischl, Bruce. 2020. Infant FreeSurfer: An automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0–2 years. Neuroimage, 218, 116946.