簡易檢索 / 詳目顯示

研究生: 蔡欣翰
Tsai, Hsin-Han
論文名稱: 基於混沌同步之改良式El-Gamal密碼系統的設計與實現及其應用於嵌入式即時影像處理
Design and Implementation of Improved El-Gamal Cryptosystem based on Chaotic Synchronization and Its Application to Embedded Real-Time Image Processing
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 57
中文關鍵詞: El-Gamal加密系統同步混沌系統離散滑動模式控制影像加密嵌入式系統
外文關鍵詞: El-Gamal cryptosystem, Synchronization, Chaotic system, Discrete sliding mode control, Image encryption, Embedded system
相關次數: 點閱:140下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要討論基於混沌同步之改良式El-Gamal密碼系統設計與即時影像加密系統技術之設計與實現,首先討論連續時間的混沌系統之離散化,並確保此離散混沌系統仍保有原先連續時間的混沌系統之隨機特性;其次,提出離散滑動模式同步控制器之設計,確保主僕離散混沌系統能夠同步;再次,結合離散混沌系統同步,利用離散時間混沌系統的隨機特性,提出改良式El-Gamal密碼系統。此方法利用混沌同步之特性,亦即主系統及僕系統獲得相同之混沌訊號,並將其訊號取代El-Gamal演算法之公開金鑰以達到隱藏公鑰之目的,有效改善傳統El-Gamal密文過長與計算耗時的問題,同時可以提昇其安全性。最後透過嵌入式系統,實現此提出之改良式El-Gamal密碼系統並整合影像加密技術,完成高安全性之即時影像加密系統。

    This paper is concerned with the design of an improved El-Gamal cryptosystem based on chaos synchronization and the design and implementation of a real-time image encryption system. First, we discretize continuous-time chaotic systems that still retain the random characteristics of continuous-time chaotic systems; then, a discrete sliding mode controller (DSMC) is proposed to ensure that the master and slave discrete chaotic system can be synchronized; next, the improved El-Gamal cryptosystem is proposed by using the random characteristics of discrete-time chaotic systems. This method uses the characteristics of chaos synchronization—that is, the master system and slave system obtain the same chaotic signal, which replaces the public key of the El-Gamal algorithm to meet the requirement of a hidden public key. Therefore, it can effectively improve the traditional El-Gamal algorithm with long ciphertext and time-consuming calculation. Not only can El-Gamal security characteristics be retained, but its security is also enhanced. Finally, we use embedded systems to realize the high-security real-time image encryption system with the improved El-Gamal cryptosystem.

    摘要 I Abstract II 誌謝 IV Contents V List of Figures VIII List of Tables X CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 2 1.3 Thesis Organization 4 CHAPTER 2 CHAOS SUPPRESSION AND SYNCHRONIZATION 5 2.1 The Characteristics of Chaos 5 2.2 Lorenz Equations 6 2.3 Problem Description of Discrete Chaotic Systems 7 2.3.1 Problem Formulation 8 2.3.2 Numerical Simulation 9 2.4 Discussion on Design of Digitized Chaotic System with Adjustable Amplitude 11 2.4.1 Adjustable Amplitude-Design 12 2.4.2 Numerical Simulation 13 2.5 Ripple Chaos Suppression and Synchronization Controller Design 15 2.5.1 Chaos Suppression 15 2.5.2 Chaos Synchronization 19 CHAPTER 3 DESIGN OF IMPROVED EL-GAMAL CRYPTOSYSTEM 25 3.1 Background of El-Gamal Cryptosystem 25 3.2 Improved El-Gamal Cryptosystem Design 26 3.2.1 Traditional El-Gamal Encryption Algorithm 26 3.2.2 Improved El-Gamal Encryption Algorithm 28 3.3 Implementation and Preliminary Verification 30 CHAPTER 4 EXPERIMENTS AND PERFORMANCE ANALYSIS 32 4.1 Visual Effect of Encrypted Images 32 4.2 Statistical Analysis 33 4.3 Histogram Analysis 34 4.4 Speed Analysis 35 CHAPTER 5 SYSTEM IMPLEMENTATION AND APPLICATION 37 5.1 System Structure 37 5.2 Data Transfer Protocol 38 5.3 Software Implementation 39 5.3.1 Socket Communication 39 5.3.2 Chaos Synchronization 41 5.3.3 Image Preprocessing 43 5.3.4 Image Encryption Processing and Decryption Processing 45 5.4 Real-Time Image Cryptosystem Implementation 48 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 53 6.1 Conclusion 53 6.2 Future Work 54 REFERENCES 55

    [1] “Industry 4.0,” https://en.wikipedia.org/wiki/Industry_4.0
    [2] Lorenz, E.N., “Deterministic nonperiodic flow,” Journal of the atmospheric sciences, vol. 20(2), pp. 130–141, 1963.
    [3] Rivest, R.L., Shamir, A., Adleman, L. “A method for obtaining digital signatures and public-key cryptosystems.” Communications of the ACM, vol. 21(2), pp. 120–126, 1978.
    [4] Elgamal, T. “A public key cryptosystem and a signature scheme based on discrete logarithms.” IEEE Transactions on Information Theory, vol. 31(4), pp. 469–472, 1985.
    [5] Koblitz, N. “Elliptic curve cryptosystems.” Mathematics of Computation, vol. 48(177), pp. 203–209, 1987.
    [6] “Pretty Good Privacy (PGP)”,https://en.wikipedia.org/wiki/Pretty_Good_Privacy
    [7] “GNU Privacy Guard (GnuPG)”,https://en.wikipedia.org/wiki/GNU_Privacy_Guard
    [8] Wu, Z., Su, D., Ding, G. "ElGamal algorithm for encryption of data transmission," IEEE 2014 International Conference on Mechatronics and Control (ICMC), pp. 1464–1467, 2014.
    [9] Lee, W.B., Wu, C.C., Tsaur, W.J. “A novel deniable authentication protocol using generalized ElGamal signature scheme.” Inform. Sci., vol. 177(6), pp. 1376–1381, 2006.
    [10] Chang, T.Y., Hwang, M.S., Yang, W.P. “Cryptanalysis on an improved version of ElGamal-like public key encryption scheme for encrypting large message.” Informatica, vol. 23(4), pp. 537–562, 2012.
    [11] Sharma, P., Sharma, S., Dhakar, R.S. “Modified Elgamal Cryptosystem Algorithm (MECA).” IEEE 2011 2nd International Conference on Computer and Communication Technology (ICCCT), pp. 439–443, 2011.
    [12] Yan, J.J. “Sliding mode control design for uncertain time-delay systems subjected to a class of nonlinear inputs.” International Journal of Robust and Nonlinear Control, vol. 13(6), pp. 519–532, 2003.
    [13] Roopaei, M., Sahraei, B.R., Lin, T.C. “Adaptive sliding mode control in a novel class of chaotic systems.” Communications in Nonlinear Science and Numerical Simulation, vol. 15(12), pp. 4158–4170, 2010.
    [14] Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C. “Adaptive synchronization for uncertain chaotic neural networks with mixed time delays using fuzzy disturbance observer.” Applied Mathematics and Computation, vol. 219(11), pp. 5984–5995, 2013.
    [15] Yassen, M.T. “Controlling chaos and synchronization for new chaotic system using linear feedback control.” Chaos, Solitons & Fractals, vol. 26(3), pp. 913–920, 2005.
    [16] Hsu, K.C. “Adaptive variable structure control design for uncertain time-delay system with nonlinear input.” Dynamics and Control, vol. 8(4), pp. 341–354, 1998.
    [17] Pai, M.C. “Global synchronization of uncertain chaotic systems via discrete-time sliding mode control.” Applied Mathematics and Computation, vol. 227, pp. 663–671, 2014.
    [18] Liu, L., Fu, Z., Cai, X., Song, X. “Non-fragile sliding mode control of discrete singular systems.” Communications in Nonlinear Science and Numerical Simulation, vol. 18(3), pp. 735–743, 2013.
    [19] “Chaos theory,” https://en.wikipedia.org/wiki/Chaos_theory
    [20] Diffie, W., Hellman, M. “New directions in cryptography.” IEEE transactions on Information Theory, vol. 22(6), pp. 644-654, 1976.
    [21] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E. “A statistical test suite for random and pseudorandom number generators for cryptographic applications.” NIST Special Publication, May 15, 2001.
    [22] Stevens, W. R., Fenner, B., Rudoff, A. M. Unix Network Programming Addison-Wesley Professional, vol. 1, 2004.
    [23] Joe Maller: FXScript Reference: RGB and YUV Color, http://www.joemaller.com/fcp/fxscript_yuv_color.shtml
    [24] “OpenCV 2.4.7.0 documentation,” http://docs.opencv.org/2.4.7/

    無法下載圖示 校內:2020-07-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE