研究生: |
黃家盛 Huang, Chia-Sheng |
---|---|
論文名稱: |
具奈米介電層之聚(3-己烷基噻吩)場效電晶體 Poly(3-hexylthiophene)-based Field-Effect Transistors with Nanostructure Dielectrics |
指導教授: |
周維揚
Chou, Wei-Yang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 週期性奈米結構 、有機場效電晶體 、聚(3-己烷基噻吩) |
外文關鍵詞: | Organic thin film transistors, Nanoimprint lithography technology, Polyimide, Micro-Raman, P3HT |
相關次數: | 點閱:116 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以Regioregular Poly(3-hexythiophene) (高度立體規則度聚(3-己烷基噻吩),簡稱RR-P3HT)為有機場效電晶體的主動層,利用遮罩式奈米轉印技術製作週期性奈米結構的PI (聚亞醯胺薄膜polyimide, 簡稱PI)修飾層。使用噴墨列印的方式製作半導體層,讓有機半導體有較長的時間排列分子結構,並利用遮罩定義半導體面積,使載子不會在多餘的區域內流竄,以降低漏電流,而獲得較佳之電特性。
實驗結果顯示,RR-P3HT在經過奈米結構的作用下,元件電特性將有所提升,相較於無壓印處理的PI元件,載子遷移率增加為3倍,且載子遷移率在平行結構與垂直結構方向上的比值,高達33倍。藉由原子力顯微鏡與掃描式電子顯微鏡,觀察出在奈米結構修飾層中,RR-P3HT有較佳的結晶規則程度與匯集於溝槽底部的現象,幫助電晶體電特性和載子遷移率異向性比的提升。在材料分析中,利用拉曼振動光譜分析結果指出,經奈米壓印處理的元件,RR-P3HT有較佳的分子排列方式。
關鍵字:有機場效電晶體、聚(3-己烷基噻吩)、週期性奈米結構。
In this study, we have successfully fabricated regioregular poly(3-hexylthiophene) (RR-P3HT)-based organic thin-films transistors (OTFTs) using polyimide (PI) with nanoimprinted grooves as the dielectrics layers to investigate the electronic transport behaviors. The contact-transferred and mask-embedded lithography technology was employed to form the PI-nanogrooves. Good orientation of the RR-P3HT polymer chains along the trench of the PI-nanogrooves was achieved by inkjet-printing the RR-P3HT on the PI-nanogrooves to result in high field-effect mobility OTFTs in which the field-effect is as high as 2.58×10-2 cm2/Vs. Especially, high mobility anisotropies (μ// /μ⊥), which is defined as the ratio of the carrier mobility along the PI-nanogrooves to that across the PI-nanogrooves, was obtained in the PI-nanogrooves OTFTs. In order to realize the properties of RR-P3HT films within the trench of the PI-nanogroove, atomic force microscopy, scanning electron microscope, and polarized micro-Raman spectroscopy were used to study the orientation of the RR-P3HT polymer chains.
Keywords: Organic thin film transistors, P3HT, Polyimide, Nanoimprint lithography technology, Micro-Raman.
[1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes” Appl. Phys. Lett. 51, p.913, 1987.
[2] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature. 347, p.539, 1990.
[3] F. Ebisawa, T. Kurokawa and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” J. Appl. Phys. 54, p.3255, 1983.
[4] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett. 49, p.1210, 1986.
[5] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes” J. Lumine. 60, p.906, 1994.
[6] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett. 62, p.585, 1993.
[7] Yanming Sun, Yunqi Liu and Daoben Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem. 15, p.53, 2005.
[8] J. Park, S. Y. Park, S.-O. Shim, H. Kang and H. H. Lee, “A poly gate dielectric for high-mobility polymer thin-film transistors and solvent effects” Appl. Phys. Lett. 85, p.3283, 2004.
[9] 陳壽安,物理雙月刊, 23 (2), 312. , 2001.
[10] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett. 49, p.1210, 1986.
[11] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater. 14, 2002.
[12] S. M. Sze, “Semiconductor Devices:Physics and technology 2nd edition” John Wiley & Sons INC., New York, 2001.
[13] M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5nm linewidth and 14 nm pitch features by nanoimprint lithography” Appl. Phys. Lett. 84, p.5299, 2004.
[14] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers” Appl. Phys. Lett. 67, p.3114, 1995.
[15] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson, “Step-and-flash imprint lithography: a new approach to high resolution patterning” Proc. SPIE. 3676, p.379, 1999.
[16] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voos, A. J. H. Splering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature. 401, p.685, 1999.
[17] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers” Science. 287, p.1741, 1998.
[18] J. G. Laquindanum, H. E. Katz, A. J. Lovinger, and A. Dodabalapur, “Benzodithiophene rings as semiconductor building blocks” Adv. Mater. 9, p.36 1997.
[19] B. H. Hamadani, D. J. Gundlach, I. McCulloch, and M. Heeney, “Undoped polythiophene field-effect transistors with mobility of 1 cm2V-1s-1” Appl. Phys. Lett. 91, p.243512, 2007.
[20] J. Li, F. Qin, C. M. Li, Q. Bao, M. B. Chan-Park, W. Zhang, J. Qin, and B. S. Ong, “High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles” J. Am. Chem. Soc. 20, p.6, 2008.
[21] H. Wang, D. Song, J. Yang, B. Yu, Y. Geng, and D. Yan, “High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors” Appl. Phys. Lett. 90, p.253510, 2007.
[22] S. Lee, B. Koo, J. Shin, E. Lee, and H. Park, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance” Appl. Phys. Lett. 88, p.162109, 2006.
[23] S. Liu, C. B. Mannsfeld, M. C. LeMieux, H. W. Lee, and Z. Bao, “Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios” Appl. Phys. Lett. 92, p.053306, 2008.
[24] M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, and C. Rovira, “High-mobility tetrathiafulvalene organic field-effect transistors from solution processing” Org. Electron. 9, p.1101, 2008.
[25] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors” Nature. 457, p.679, 2009.
[26] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “Ultralow-power organic complementary circuits” Nature. 445, p.745, 2007.
[27] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, ”High mobility n-type thin-film transistors based on N-ditridecyl perylene diimide with thermal treatments” Appl. Phys. Lett. 89, p.112108, 2006.
[28] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, “Organic thin film transistors based on N-Alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature” J. Phys. Chem. 108, p.19281, 2004.
[29] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa, “C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition” Adv. Mater. 4, p.371, 2003.
[30] A. Salleo, M. L. Chabiny, M. S. Yang, and R. A. Street, “Polymer thin-film transistor with chemically modified dielectric interfaces” Appl. Phys. Lett. 81, 23, p.4383, 2002.
[31] D. Cui, H. Li, H. Park, and X. Cheng, “Improving organic thin-film transistor performance by nanoimprint-induced chain ordering” J. Vac. Sci. Technol. 26, p.2404, 2008.
[32] J. Veres, S. Ogier, and G. Lloyd, “Gate insulators in organic field-effect transistors” Chem. Mater. 16, p.4543, 2004.
[33] R. Osterbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals” Science. 287, p.4, 2000.
[34] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Ingana1s, R. Feidenhans’l and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films” Macromolecules. 33, p.3120, 2000.
[35] Y. C. Lee, and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching” J. Micromech. Microeng. 18, p.075013, 2008.
[36] H. Sirringhaus, N. Tessler, and R.H. Friend “Integrated high-mobility polymer field-effect transistors driving polymer light-emitting diodes” Synth. Met. 102, p.857, 1999.
[37] S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, and A. J. Heeger, “Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly-(3-hexylthiophene) films” J. Appl. Phys. 100, p. 114503, 2006.
[38] M. Cavallini, P. Stoliar, J.-F. Moulin, M. Surin, P. Leclere, R. Lazzaroni, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, P. Sonar, A. C. Grimsdale, K. Mullen, and F. Biscarini, “Field-effect transistors based on self-organized molecular nanostripes” Nano Lett. 5, p.12, 2005.
[39] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, P. Woo, M. Grell, and D. D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase” Appl. Phys. Lett. 77, p.406, 2000.
[40] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski and S. Lefrant, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)” J. Phys. Chem. 100, p.12532, 1996.
[41] S. Lefrant, I. Baltog, M. Lamy de Chapelle, M. Baibarac, G. Louarn, C. Journet and P. Bernier, “Structural properties of some conductingpolymers and carbon nanotubes investigated by SERS spectroscopy” Synth. Met. 100, p.13, 1999.
[42] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, and I. Batlog, “SERSspectra of poly(3-hexylthiophene) in oxidized and unoxidized states” J. Raman Spectrosc. 29, p.825, 1998.
[43] G. Zerbi, B. Chierichetii, and O. Inganas, “Thermochromism inpolyalkylthiophenes: molecular aspects from vibrational spectroscopy” J. Chem. Phys. 97, p.4646, 1991.