簡易檢索 / 詳目顯示

研究生: 黃家盛
Huang, Chia-Sheng
論文名稱: 具奈米介電層之聚(3-己烷基噻吩)場效電晶體
Poly(3-hexylthiophene)-based Field-Effect Transistors with Nanostructure Dielectrics
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 72
中文關鍵詞: 週期性奈米結構有機場效電晶體聚(3-己烷基噻吩)
外文關鍵詞: Organic thin film transistors, Nanoimprint lithography technology, Polyimide, Micro-Raman, P3HT
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以Regioregular Poly(3-hexythiophene) (高度立體規則度聚(3-己烷基噻吩),簡稱RR-P3HT)為有機場效電晶體的主動層,利用遮罩式奈米轉印技術製作週期性奈米結構的PI (聚亞醯胺薄膜polyimide, 簡稱PI)修飾層。使用噴墨列印的方式製作半導體層,讓有機半導體有較長的時間排列分子結構,並利用遮罩定義半導體面積,使載子不會在多餘的區域內流竄,以降低漏電流,而獲得較佳之電特性。
    實驗結果顯示,RR-P3HT在經過奈米結構的作用下,元件電特性將有所提升,相較於無壓印處理的PI元件,載子遷移率增加為3倍,且載子遷移率在平行結構與垂直結構方向上的比值,高達33倍。藉由原子力顯微鏡與掃描式電子顯微鏡,觀察出在奈米結構修飾層中,RR-P3HT有較佳的結晶規則程度與匯集於溝槽底部的現象,幫助電晶體電特性和載子遷移率異向性比的提升。在材料分析中,利用拉曼振動光譜分析結果指出,經奈米壓印處理的元件,RR-P3HT有較佳的分子排列方式。

    關鍵字:有機場效電晶體、聚(3-己烷基噻吩)、週期性奈米結構。

    In this study, we have successfully fabricated regioregular poly(3-hexylthiophene) (RR-P3HT)-based organic thin-films transistors (OTFTs) using polyimide (PI) with nanoimprinted grooves as the dielectrics layers to investigate the electronic transport behaviors. The contact-transferred and mask-embedded lithography technology was employed to form the PI-nanogrooves. Good orientation of the RR-P3HT polymer chains along the trench of the PI-nanogrooves was achieved by inkjet-printing the RR-P3HT on the PI-nanogrooves to result in high field-effect mobility OTFTs in which the field-effect is as high as 2.58×10-2 cm2/Vs. Especially, high mobility anisotropies (μ// /μ⊥), which is defined as the ratio of the carrier mobility along the PI-nanogrooves to that across the PI-nanogrooves, was obtained in the PI-nanogrooves OTFTs. In order to realize the properties of RR-P3HT films within the trench of the PI-nanogroove, atomic force microscopy, scanning electron microscope, and polarized micro-Raman spectroscopy were used to study the orientation of the RR-P3HT polymer chains.

    Keywords: Organic thin film transistors, P3HT, Polyimide, Nanoimprint lithography technology, Micro-Raman.

    中文摘要 I Abstract II 誌謝 IV 目次 VI 表目錄 VIII 圖目錄 IX 第1章 簡介 1 1.1 有機半導體(Organic Semiconductor) 1 1.2 有機半導體傳輸機制 2 1.3 有機薄膜電晶體 (Organic Thin-film Transistors, OTFTs) 3 1.3.1 元件結構 4 1.3.2 有機薄膜電晶體操作原理 5 1.3.3 有機薄膜電晶體基本電性參數計算 5 1.3.4 奈米壓印技術發展簡介 7 1.3.5 本論文研究目的 9 第2章 利用奈米壓印技術製作P3HT有機薄膜電晶體之元件設計 17 2.1 前言 17 2.2 實驗儀器 18 2.3 實驗方法 20 2.3.1 有機材料 20 2.3.2 樣品製作 21 第3章 P3HT有機薄膜電晶體元件製作與電性分析 31 3.1 前言 31 3.2實驗儀器 31 3.3 元件製作 35 3.4 電性 36 3.4.1 電性分析 36 3.4.2 AFM分析 39 3.4.3 SEM分析 40 3.4.4 拉曼分析 41 第4章 結論與未來工作 63 4.1 結論 63 4.2 未來工作 64 參考文獻 65

    [1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes” Appl. Phys. Lett. 51, p.913, 1987.
    [2] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, “Light-emitting diodes based on conjugated polymers” Nature. 347, p.539, 1990.
    [3] F. Ebisawa, T. Kurokawa and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface” J. Appl. Phys. 54, p.3255, 1983.
    [4] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett. 49, p.1210, 1986.
    [5] W. Riess, S. Karg, V. Dyakonov, M. Meier and M. Schwoerer, “Electroluminescence and photovoltaic effect in PPV schottky diodes” J. Lumine. 60, p.906, 1994.
    [6] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky and F. Wudl, “Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells” Appl. Phys. Lett. 62, p.585, 1993.
    [7] Yanming Sun, Yunqi Liu and Daoben Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem. 15, p.53, 2005.
    [8] J. Park, S. Y. Park, S.-O. Shim, H. Kang and H. H. Lee, “A poly gate dielectric for high-mobility polymer thin-film transistors and solvent effects” Appl. Phys. Lett. 85, p.3283, 2004.
    [9] 陳壽安,物理雙月刊, 23 (2), 312. , 2001.
    [10] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: field-effect transistor with a polythiophene thin film” Appl. Phys. Lett. 49, p.1210, 1986.
    [11] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics” Adv. Mater. 14, 2002.
    [12] S. M. Sze, “Semiconductor Devices:Physics and technology 2nd edition” John Wiley & Sons INC., New York, 2001.
    [13] M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5nm linewidth and 14 nm pitch features by nanoimprint lithography” Appl. Phys. Lett. 84, p.5299, 2004.
    [14] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers” Appl. Phys. Lett. 67, p.3114, 1995.
    [15] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson, “Step-and-flash imprint lithography: a new approach to high resolution patterning” Proc. SPIE. 3676, p.379, 1999.
    [16] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voos, A. J. H. Splering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers” Nature. 401, p.685, 1999.
    [17] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated optoelectronic devices based on conjugated polymers” Science. 287, p.1741, 1998.
    [18] J. G. Laquindanum, H. E. Katz, A. J. Lovinger, and A. Dodabalapur, “Benzodithiophene rings as semiconductor building blocks” Adv. Mater. 9, p.36 1997.
    [19] B. H. Hamadani, D. J. Gundlach, I. McCulloch, and M. Heeney, “Undoped polythiophene field-effect transistors with mobility of 1 cm2V-1s-1” Appl. Phys. Lett. 91, p.243512, 2007.
    [20] J. Li, F. Qin, C. M. Li, Q. Bao, M. B. Chan-Park, W. Zhang, J. Qin, and B. S. Ong, “High-performance thin-film transistors from solution-processed dithienothiophene polymer semiconductor nanoparticles” J. Am. Chem. Soc. 20, p.6, 2008.
    [21] H. Wang, D. Song, J. Yang, B. Yu, Y. Geng, and D. Yan, “High mobility vanadyl-phthalocyanine polycrystalline films for organic field-effect transistors” Appl. Phys. Lett. 90, p.253510, 2007.
    [22] S. Lee, B. Koo, J. Shin, E. Lee, and H. Park, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance” Appl. Phys. Lett. 88, p.162109, 2006.
    [23] S. Liu, C. B. Mannsfeld, M. C. LeMieux, H. W. Lee, and Z. Bao, “Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios” Appl. Phys. Lett. 92, p.053306, 2008.
    [24] M. Leufgen, O. Rost, C. Gould, G. Schmidt, J. Geurts, L. W. Molenkamp, N. S. Oxtoby, M. Mas-Torrent, and C. Rovira, “High-mobility tetrathiafulvalene organic field-effect transistors from solution processing” Org. Electron. 9, p.1101, 2008.
    [25] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, and A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors” Nature. 457, p.679, 2009.
    [26] H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, “Ultralow-power organic complementary circuits” Nature. 445, p.745, 2007.
    [27] S. Tatemichi, M. Ichikawa, T. Koyama, and Y. Taniguchi, ”High mobility n-type thin-film transistors based on N-ditridecyl perylene diimide with thermal treatments” Appl. Phys. Lett. 89, p.112108, 2006.
    [28] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. L. Bredas, L. L. Miller, K. R. Mann, and C. D. Frisbie, “Organic thin film transistors based on N-Alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature” J. Phys. Chem. 108, p.19281, 2004.
    [29] S. Kobayashi, T. Takenobu, S. Mori, A. Fujiwara, and Y. Iwasa, “C60 thin-film transistors with high field-effect mobility, fabricated by molecular beam deposition” Adv. Mater. 4, p.371, 2003.
    [30] A. Salleo, M. L. Chabiny, M. S. Yang, and R. A. Street, “Polymer thin-film transistor with chemically modified dielectric interfaces” Appl. Phys. Lett. 81, 23, p.4383, 2002.
    [31] D. Cui, H. Li, H. Park, and X. Cheng, “Improving organic thin-film transistor performance by nanoimprint-induced chain ordering” J. Vac. Sci. Technol. 26, p.2404, 2008.
    [32] J. Veres, S. Ogier, and G. Lloyd, “Gate insulators in organic field-effect transistors” Chem. Mater. 16, p.4543, 2004.
    [33] R. Osterbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, “Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals” Science. 287, p.4, 2000.
    [34] K. E. Aasmundtveit, E. J. Samuelsen, M. Guldstein, C. Steinsland, O. Flornes, C. Fagermo, T. M. Seeberg, L. A. A. Pettersson, O. Ingana1s, R. Feidenhans’l and S. Ferrer, “Structural anisotropy of poly(alkylthiophene) films” Macromolecules. 33, p.3120, 2000.
    [35] Y. C. Lee, and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching” J. Micromech. Microeng. 18, p.075013, 2008.
    [36] H. Sirringhaus, N. Tessler, and R.H. Friend “Integrated high-mobility polymer field-effect transistors driving polymer light-emitting diodes” Synth. Met. 102, p.857, 1999.
    [37] S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, and A. J. Heeger, “Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly-(3-hexylthiophene) films” J. Appl. Phys. 100, p. 114503, 2006.
    [38] M. Cavallini, P. Stoliar, J.-F. Moulin, M. Surin, P. Leclere, R. Lazzaroni, D. W. Breiby, J. W. Andreasen, M. M. Nielsen, P. Sonar, A. C. Grimsdale, K. Mullen, and F. Biscarini, “Field-effect transistors based on self-organized molecular nanostripes” Nano Lett. 5, p.12, 2005.
    [39] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, P. Woo, M. Grell, and D. D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase” Appl. Phys. Lett. 77, p.406, 2000.
    [40] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski and S. Lefrant, “Raman spectroscopic studies of regioregular poly(3-alkylthiophenes)” J. Phys. Chem. 100, p.12532, 1996.
    [41] S. Lefrant, I. Baltog, M. Lamy de Chapelle, M. Baibarac, G. Louarn, C. Journet and P. Bernier, “Structural properties of some conductingpolymers and carbon nanotubes investigated by SERS spectroscopy” Synth. Met. 100, p.13, 1999.
    [42] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, and I. Batlog, “SERSspectra of poly(3-hexylthiophene) in oxidized and unoxidized states” J. Raman Spectrosc. 29, p.825, 1998.
    [43] G. Zerbi, B. Chierichetii, and O. Inganas, “Thermochromism inpolyalkylthiophenes: molecular aspects from vibrational spectroscopy” J. Chem. Phys. 97, p.4646, 1991.

    下載圖示 校內:2014-08-24公開
    校外:2014-08-24公開
    QR CODE