| 研究生: |
鄭正義 Cheng, Cheng-Yi |
|---|---|
| 論文名稱: |
雷擊洩放電流對建築物箍筋結構感應之研究 Study of the Lightning Induced Effects on Stirrup Structures |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 避雷針下引線 、鋼筋結構 、箍筋 、高頻比流器 |
| 外文關鍵詞: | lightning rod grounding, reinforced structures, stirrups, high frequency current transformer. |
| 相關次數: | 點閱:126 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了降低建築物遭受雷擊時,家電及電氣設備的破壞,避雷針下引線必須能及時洩放雷電流,因而下引線裝設的位置成為能及時洩放雷電流的方法。本文討論避雷針下引線裝設位置,經實驗分析結果,建議於無水泥下將下引線裝置於建築物梁柱箍筋之外較為理想,本實驗採用高壓電對鋼筋結構進行雷擊放電模擬,並使用高頻比流器實際測量避雷針下引線對鋼筋結構箍筋之感應。實驗中紀錄下引線裝置於梁柱箍筋之內、箍筋長邊之外側與箍筋短邊之外側時,箍筋之感應電流,藉以探討箍筋感應電流之數據與特性。以無水泥下之梁柱量測其結果顯示下引線設置於建築物梁柱箍筋之外,其洩放電流與電功率都能有效的釋放,進而使建築物內之電氣設施受到保護;此實驗亦証明目前施工方式有其改善之空間。
Adjustment of the installation position of a grounding wire of lightning rod is a solution to reduce the destruction of appliances and electrical equipments as the building was struck by lightning. This thesis is a study of the location of the lightning rod grounding wire set. The analysis suggests that the ground wire had better be outside the building stirrups without concrete. This experiment uses series of high voltage discharge circuit to simulate lightning stroke to reinforced structures, and uses the high frequency current transformer (HFCT) to measure the induction of grounding wire to stirrups of reinforced structures. It investigates the induction of grounding wire placed within or outside the stirrups. The grounding wire outside should be located at long and short side of stirrup. The measurement and records are used to analyze the data and characteristics of the induced current. The result shows when grounding wire is set outside the building beams and columns stirrups without concrete, the surge current and power can be effectively released, and thus make the electrical facilities within the building be protected. This experiment also shows that a further improvement is required for current construction methods.
參考文獻
[1] 維基百科,“自由的百科全書--班傑明•富蘭克林”,2012。
[2] 台灣電力公司,“台電綜合研究所,各縣市落雷情形”,2013。
[3] 中華民國內政部營建署,“建築技術規則-建築設備編”,2011。
[4] 吳璧如,“細說閃電”,2009,取自:
http://sprite.phys.ncku.edu.tw/new/other/lightning/lightning.htma
[5] 張文英,“雷、防雷及避雷”,電機月刊、第一卷第三期,1992。
[6] 王國英,“閃電Lightning”,台灣大百科全書,2009,取自:
http://taiwanpedia.culture.tw/
[7] 雷雨雲起電:http://baike.baidu.com/view/2332598.htm,2013。
[8] IEEE Std. 998-1996, “IEEE Guide for Direct Lightning Stroke Shielding of Substations,” 1996.
[9] 顏世雄,“高電壓工程”,新學識, pp.2-19-34, pp.8-30-47,1997。
[10] M. S. Naidu and V. Kamaraju, “High Voltage Engineering,” Second Edition McGraw-Hill, pp. 226-251, 2002.
[11] A. Greenwood, “Electrical Transients in Power System,” Second Edition Wiley-Interscince, USA, pp.463-554, 1991.
[12] W. He, S. Li, and Y. Gao, “EMC design in lightning protection of computer network,” Asia-Pacific Conference on Environmental Electromagnetics CEEM’2006, pp.507-512, 2006.
[13] Y. Chen, S. Liu, X. Wu, and F. Zhang, “A New Kind of Lightning Channel-Base Current Function”, International Symposium on Electromagnetic Compatibility, pp. 304-307, 21-24 May, 2002.
[14] F. Heidler, “Traveling Current Source Model for LEMP Calculation,” Proc. 6th Int. Zurich Symp.Tech. Exhib. Electromag. Compat, Zurich, pp.157-162, 1985.
[15] 台灣電力公司,“台電輸電工程作業手冊”,1971。
[16] Westinghouse Electric Corporation Power System,”Surge Protection of Power Systems”,pp.1-9,1975.3.
[17] IEEE Std 1243-1997, “IEEE Guide for Improving the Lightning Performance of Transmission Lines”, 1997.
[18] IEEE Std 1410™-2004, “IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines”, 2004.
[19] 何世南,“參數影響逆閃絡雷擊波之分析研究”,國立成功大學電機工程碩士論文,1991。
[20] “High Voltage Impulse Generator 200kV”, online available:
http://www.shenchang.com.tw/,2002.
[21] 劉志放譯,“高壓電工程-量測、試驗及設計”,徐式基金會出版,1992。
[22] J. O. S. Paulino, C. F. Barbosa, I. J. S. Lopes, and D. C. Boaventura, “The Peak Value of Lightning-Induced Voltages in Overhead Lines Considering the Ground Resistivity and Typical Return Stroke Parameters,” IEEE Transactions on Power Delivery, vol. 26, no. 2, pp. 920-927, 2011.
[23] J. J. Grainger and W. D. Stevenson, Jr. “Power System Analysis”, McGraw-Hill, Inc., 1994.
[24] 長谷川弘、藤田和夫,“高速、高頻數位電路設計的關鍵”,建興文化事業有限公司,2005。
[25] 林育勳,“電力電纜絕緣狀態評估研究-利用方向性耦合檢測器研究25kV配電級電纜中間接頭局部放電定位與辨識(第3年)研究成果報告(完整版)”,2010。
[26] L. M. Zhou and S. A. Boggs, “Rise Times of Impulsive High-Current Processes in Cloud to Ground Lightning,” IEEE Transactions on Antennas and Propagation, vol. 48, no. 9, pp. 1442-1451, 2011.
[27] L. M. Zhou and S. A. Boggs, “Effect of Shielded Distribution Cables on Lightning-Induced Overvoltages in a Distribution System,” IEEE Transactions on Power Delivery, vol. 17, no. 2, pp. 569-574, 2002.
[28] L. M. Zhou and S. A. Boggs, “Effect of High Frequency Cable Attenuation on Lightning-Induced Overvoltages at Transformers,” in Proceedings the 2002 IEEE Rural Electric Power Conference (REPC), Colorado, USA, pp. A3-A3.7, 5-7 May, 2002.
[29] A. Carrus, E. Cinieri, and C. Mazzetti, “Behavior of MV Insulators Under Lightning-Induced Overvoltages: Experimental Results and Reproduction of Volt–Time Characteristics by Disruptive Effect Models,” IEEE Transactions on Power Delivery, vol. 25, no. 1, pp. 221-230, 2010.
[30] V. Cooray and V. A. Rakov, “Engineering Lightning Return Stroke Models Incorporating Current Reflection From Ground and Finitely Conducting Ground Effects,” IEEE Transactions on Electromagnetic Compatibility, vol. 52, no. 3, pp. 773-781, 2011.
[31] 聯東金屬有限公司,取自:http://www.landon.com.tw,2013年。