| 研究生: |
許峻嘉 Hsu, Chun-Chia |
|---|---|
| 論文名稱: |
薄型QFN封裝側面撞擊產生之破壞分析與改善 Fracture Analysis and Improvement of Extra Thin QFN Electronic Package under Side Impact |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | ANSYS-Workbench 、薄型QFN 、三點彎曲試驗 、衝擊 |
| 外文關鍵詞: | ANSYS-Workbench, Extra Thin QFN Electronic Package, Three-point Bending Test, Side Impact |
| 相關次數: | 點閱:171 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用有限元素分析軟體ANSYS-Workbench分析設備製程動作中的瞬態行為,主要是以軟體模擬方式去匹配實際的實驗結果。研究共分為兩階段進行,第一階段使用電子萬能試驗機進行薄型QFN三點彎曲測試的實驗,取得實際產品失效時的最大破壞荷重與變形量,接著將實驗之最大破壞荷重套入ANSYS軟體進行分析,以觀察該變形量與實際的實驗結果是否相符,以此收斂薄型QFN幾何模型的可靠度;第二階段以驗證過的幾何模型加入供料模組分離器系統的邊界條件,模擬現行設備的製程動作,在假設薄型QFN完美以面撞擊限位塊與產生偏擺並上浮以點撞擊限位塊的兩種型態,找出導致不良品產生的問題。本論文以兩個方案進行改善分析,方案1變更限位塊的材質,以提高吸收衝擊能力;方案2減緩薄型QFN撞擊前的移動速度,以降低衝擊力產生。最後改善結果,不良率由每一百萬顆有33顆不良品,最終下降至每一百萬顆僅有5顆不良品左右,可有效的改善了薄型QFN於供料模組分離器系統的品質。
This research employs the finite element analysis software ANSYS to study the behavior in equipment manufacturing process, and mainly focuses on the comparison between the results of ANSYS simulation and actual experimental data. This research contains two parts, the first part is to use the universal testing machine to conduct three-point bending test on the extra thin QFN electronic packages to obtain the data of the ultimate load and deformation. Next, load the related data to ANSYS, set related conditions to proceed the analysis, observe the deformation corresponding to real situation, and adjust the extra thin QFN electronic package geometry model. The second part is to add the boundary conditions of feed module separator and use ANSYS to simulate the current manufacturing process. Next, determine stress distribution of the defective products under the assumption that the extra thin QFN electronic packages hit the limited block with the flat side and with the sharp point. This thesis considers two improvement plans, plan 1 is to change the material of limited block to have better shock absorbency; plan 2 is to slow down the extra thin QFN electronic packages before it hits the limited block to reduce the shock. The final result shows that the defective rate lowers from 33 pieces to 5 pieces defected per million. The quality of the extra thin QFN electronic packages in feed module separator is greatly improved.
[1]. H. Abdullah and M. F. A. S. Shaarani, “Effects of Different Die and Epoxy Thickness to the QFN Package”, Key Engineering Materials, Vols. 462-463, pp. 943-948, 2011.
[2]. S. Chen, T.-Y. Kuo, H.-T. Hu, J.-R. Lin and S.-P. Yu, “The Evaluation of Wafer Thinning and Simulating Processes to Enhance Chip Strength”, IEEE, Proceedings Electronic Components and Technology, ECTC '05, pp.1525-1530, 2005.
[3]. S. Abdullah, M. F. M. Yunoh and A. Jalar “Three-Point Bending Test Behaviour of a QFN Semiconductor Package”, Advanced Materials Research, Vol. 97, pp. 7-10, 2010.
[4]. J. Su, X.-S. Wang and H.-H. Ren, “Experimental and Theoretical Analyses of Package-on-Package Structure under Three-Point Bending Loading”, Chinese Physics B, Vol. 21, No. 12, pp.126201, 2012.
[5]. S. Shetty and T. Reinikainen, “Three-and Four-Point Bend Testing for Electronic Packages”, J. Electron. Packag, Vol. 125, No. 4, pp. 556-561, 2003.
[6]. A. Eghtesad and A. R. Shafiei, “Body Deformation Study in a Formula One Race Car Crashing into a Rigid Barrier at Different Crash Angles”, International Journal of Crashworthiness, Vol. 17, No. 4, pp. 384-400, 2012.
[7]. T. P. Valayil and J. C. Issac, “Crash Simulation in ANSYS LS-DYNA to Explore the Crash Performance of Composite and Metallic Materials”, International Journal of Scientific & Engineering Research, Vol. 4, No. 8, 2013.
[8]. S. Sabne, A. Mahmood, T. Barua, D. Agonafer and N. Kansara, “Parametric Study of the QFN Mounted PCB- Cu Layer Thickness Effect on the Stress Induced during Drop Testing”,15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1530-1536, 2016.
[9]. T. Furushima, H. Tsunezaki, K.-I. Manabe, S. Alexsandrov, “Ductile Fracture and Free Surface Roughening Behaviors of Pure Copper Foils Formicro / Meso-Scale Forming”, ELSEVIER International Journal of Machine Tools & Manufacture, Vol.76, pp. 34-48, 2014.
[10]. 曾詠茹,「有限元素分析不同外徑/壁厚比局部圓形凹痕圓管在循環彎曲負載下之行為」,國立成功大學碩士論文,2016。
[11]. 林倩如,「有限元素分析局部尖銳凹痕圓管在循環彎曲負載下之行為」,國立成功大學碩士論文,2016。
[12]. 高偉倫,「有限元素分析輕鋼架天花板在地震運動時之動態行為」,國立成功大學碩士論文,2016。
[13]. 林青穆,「薄型QFN封裝於測試環境產生之結構破壞分析與改善」,國立成功大學碩士論文,2019。
[14]. H.-H. Lee, Finite Element Simulations with ANSYS Workbench 17, Schroff, 2017.
[15]. G. A. Muñoz, “Mesh Quality and Advanced Topics ANSYS Workbench 16.0”, Published in ACADEMIA, 2015, Take https://www.academia.edu/16970000/MESH_QUALITY_AND_ADVENCED_TOPICS_ANSYS_WORKBENCH_16.0 .