簡易檢索 / 詳目顯示

研究生: 吳侑承
Wu, Yu-Cheng
論文名稱: 具降低雷射幾何擾動功能之四自由度音圈馬達設計
Design of 4-DOF Voice Coil Motor with Function of Reducing Laser Geometrical Fluctuations
指導教授: 劉建聖
Liu, Chien-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 音圈馬達致動器直流有刷馬達雷射擾動雷射光斑
外文關鍵詞: Voice coil motor, Actuator, DC brushed motor, Laser fluctuations, Laser speckle
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雷射廣泛應用於各個領域,近年來雷射需求逐年上升,相關產業對雷射品質的要求逐漸提高,各家廠商為改善雷射品質提出許多不同方案,有些針對電源輸入,有些則透過外在補償的方式進行改善。雷射本身存在四自由度擾動,包含二自由度的平移以及二自由度的偏轉擾動,許多研究指出雷射會因為溫度、空氣流動等等外在因素影響其穩定性,電源的輸入功率也會影響雷射擾動的程度。
    為降低雷射四自由度擾動的問題,目前市面上其中一種最常見的產品為快速反射鏡,快速反射鏡由一個平面鏡以及一組二自由度的致動器所構成,致動器提供二自由度的角度偏轉帶動反射鏡運動,進而控制雷射方向。而雷射總共有四自由度的擾動,所以在使用時需要搭配兩組快速反射鏡才能完整地補償。
    本論文使用SolidWorks設計繪圖並使用MATLAB與有限元素分析軟體ANSYS模擬,最終設計出一款具降低雷射擾動功能的四自由度音圈馬達。四自由度音圈馬達搭配實驗室設計之鏡組替代市售的快速反射鏡,縮短雷射補償系統的整體光路。在圈馬達內部設置一個直流有刷馬達,並安裝光學元件擴散片於有刷馬達上與其一同旋轉。在四自由度音圈馬達作動進行雷射四自由度擾動補償的時候,旋轉的擴散片可以同時抑制雷射光斑的產生,提升雷射光源品質。

    Laser is widely used in various fields. In recent years, the demand of laser has increased year by year. Related industries have gradually increased their requirements for laser quality. Various manufacturers have proposed many different solutions to improve the quality of laser.
    Laser has 4-DOF fluctuations, including 2 translational fluctuations and 2 angular fluctuations. Several studies have pointed out that the stability of laser is affected by temperature, air flow, and the input power of the power supply.
    In order to reduce the fluctuations of laser, one of the most common products on the market is the Fast Steering Mirror (FSM). FSM is composed of a flat mirror and a set of 2-DOF actuator. Actuator drives the mirror controlling the direction of laser. Although, laser has total 4-DOF fluctuations, so two sets of FSMs are needed.
    In this thesis, a 4-DOF Voice Coil Motor (VCM) with function of reducing laser geometrical fluctuations had been designed by using the CAD software SolidWorks and simulated by utilizing MATLAB and finite element analysis software ANSYS. The 4-DOF VCM is combined with a laboratory-designed mirror set to replace the commercial FSM. Shorten the overall optical path of the laser compensation system. A DC brushed motor is arranged inside the VCM, and the optical element diffuser is installed on the brushed motor rotating with it. When the 4-DOF VCM is actuated for laser compensation, the rotating diffuser can simultaneously suppress the generation of laser speckle improving the quality of laser.

    摘要 I ABSTRACT II 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 論文架構 6 第二章 文獻回顧 7 2-1 致動器介紹 7 2-2 快速反射鏡及雷射光束偏轉致動器 12 2-3 多自由度音圈馬達 20 2-4 雷射幾何擾動抑制 25 第三章 具降低雷射幾何擾動功能之四自由度音圈馬達架構及設計流程 29 3-1 馬達整體架構 29 3-2 設計目標與流程 33 第四章 直流有刷馬達設計與模擬 34 4-1 直流有刷馬達構造及基礎原理 34 4-2 4極12槽直流有刷馬達設計與模擬 39 4-2-1 ANSYS Maxwell 2D模型建立 39 4-2-2 頓轉扭矩及感應電動勢模擬 43 4-2-3 轉速與轉矩模擬 49 4-3 直流有刷馬達治具及準直透鏡 55 第五章 四自由度音圈馬達設計與模擬 59 5-1 四自由度音圈馬達構造及作動原理 59 5-2 音圈馬達數學模型 64 5-3 音圈馬達模擬 67 5-3-1 平移音圈馬達電磁模擬 67 5-3-2 偏轉音圈馬達電磁模擬 71 5-3-3 音圈馬達結構模擬 73 5-3-4 音圈馬達動態模擬 75 第六章 結論與未來規劃 81 6-1 結論 81 6-2 未來規劃 82 參考文獻 84

    [1] 邱琬雯,“產業技術評析雷射加工產業未來發展趨勢,” http://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=339.
    [2] C. C. Kuo and C. S. Chao, “Characterization of probe lasers for thin-film optical measurements,” Journal of Russian Laser Research, vol. 31, no. 1, 2010.
    [3] D. I. Kim, H. G. Rhee, J. B. Song, and Y. W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Review of Scientific Instruments, vol. 78, no. 10, pp. 103110, 2007.
    [4] F. Tricot, D. H. Phung, M. Lours, S. Guerandel, and E. de Clercq, “Power stabilization of a diode laser with an acousto-optic modulator,” Review of Scientific Instruments, vol. 89, no. 11, pp. 113112, 2018.
    [5] 白乐乐,温馨,杨煜林,刘金玉,何军,王军民,“基于声光频移器反馈控制的397.5 nm紫外激光功率稳定研究,”中国激光 Chinese Journal of Lasers, vol. 45, no. 10. 2018.
    [6] T. P. Lamour, J. Sun, and D. T. Reid, “Wavelength stabilization of a synchronously pumped optical parametric oscillator: optimizing proportional-integral control,” Review of Scientific Instruments, vol. 81, no. 5, pp. 053101, 2010.
    [7] I. T. Sugiarto, M. Watanabe, S. Sunada, and M. Hyodo, “Frequency stabilization of dual-mode microchip laser by means of beat frequency stabilization,” Optical Review, vol. 27, no. 1, pp. 98-107, 2019.
    [8] Newport, “Newport-FSM-300 fast steering mirror & controller/driver user's manual”.
    [9] Y. Lu, D. Fan, and Z. Zhang, “Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror,” Optik, vol. 124, no. 16, pp. 2443-2449, 2013.
    [10] 謝長霖,“具L型線圈特徵之音圈馬達手機相機模組設計,”國立中正大學機械工程學系,碩士論文,2016。
    [11] 維基百科,“右手定則,” https://zh.wikipedia.org/wiki/%E5%8F%B3%E6%89%8B%E5%AE%9A%E5%89%87.
    [12] S. Wu, Z. Jiao, L. Yan, Y. Shang, and C. Y. Chen, “A new rotary voice coil motor suitable for short angular strokes-design, modeling and optimization,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2013.
    [13] D. J. Lee et al., “Design of swing arm actuator for small and slim optical disc drives,” Microsystem Technologies, vol. 13, no. 8-10, pp. 1307-1313, 2007.
    [14] K. J. Smith, D. J. Graham, and J. A. Neasham, “Design and optimization of a voice coil motor with a rotary actuator for an ultrasound scanner,” IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 7073-7078, 2015.
    [15] D. J. Lee et al., “Development of L-shaped rotary voice coil motor actuator for ultra slim optical disk drive using integrated design method based on coupled-field analysis,” Japanese Journal of Applied Physics, vol. 46, no. 6B, pp. 3715-3723, 2007.
    [16] Cosmic Energy, “Piezoelectric effect,” http://www.cosmic-energy.org/?page_id=771.
    [17] 新生工業株式会社, “Ultrasonic motor,” http://www.shinsei-motor.com/English/techno/ultrasonic_motor.html.
    [18] C. L. Hsieh and C. S. Liu, “Design of a voice coil motor actuator with L-Shape coils for optical zooming smartphone cameras,” IEEE Access, vol. 8, pp. 20884-20891, 2020.
    [19] C. Kim, M. G. Song, N. C. Park, K. S. Park, Y. P. Park, and D. Y. Song, “Design of a hybrid optical image stabilization actuator to compensate for hand trembling,” Microsystem Technologies, vol. 17, no. 5-7, pp. 971-981, 2011.
    [20] K. H. Kim, S. Y. Lee, and S. Kim, “A mobile auto-focus actuator based on a rotary VCM with the zero holding current,” Optics Express, vol. 17, no. 7, 2009.
    [21] C. S. Liu and P. D. Lin, “A miniaturized low-power VCM actuator for auto-focusing applications,” Optics Express, vol. 16, no. 14, 2008.
    [22] C. S. Liu and P. D. Lin, “Miniaturized auto-focusing VCM actuator with zero holding current,” Optics Express, vol. 17, no. 12, 2009.
    [23] C. S. Liu, P. D. Lin, P. H. Lin, S. S. Ke, Y. H. Chang, and J. B. Horng, “Design and characterization of miniature auto-focusing voice coil motor actuator for cell phone camera applications,” IEEE Transactions on Magnetics, vol. 45, no. 1, pp. 155-159, 2009.
    [24] M. G. Song et al., “Design of a voice-coil actuator for optical image stabilization based on genetic algorithm,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4558-4561, 2009.
    [25] Y. H. Chang, C. C. Hu, C. L. Hsieh, and C. S .Liu, “Design of VCM actuator for optical zooming smartphone cameras,” Microsystem Technologies, vol. 25, no. 1, pp. 277-281, 2018.
    [26] 李鴻飛,“利用磁預壓力之微型音圈馬達自動對焦致動器設計,”國立中正大學機械工程學系,碩士論文,2014。
    [27] 胡誠齊,“音圈馬達之手機相機光學變焦模組設計,”國立中正大學機械工程學系,碩士論文,2017。
    [28] T. Mototsuji, A. Heya, and K. Hirata, “Design and analysis of a six-degree-of-freedom oscillatory actuator,” International Conference on Electrical Machines and Systems, 2019.
    [29] R. Banik and D. G. Gweon, “Design and optimization of voice coil motor for application in active vibration isolation,” Sensors and Actuators A: Physical, vol. 137, no. 2, pp. 236-243, 2007.
    [30] P. Estevez, A. Mulder, and R. H. M. Schmidt, “6-DOF miniature maglev positioning stage for application in haptic micro-manipulation,” Mechatronics, vol. 22, no. 7, pp. 1015-1022, 2012.
    [31] M. H. Kim, H. Kim, and D. G. Gweon, “Design and optimization of voice coil actuator for six degree of freedom active vibration isolation system using Halbach magnet array,” Review of Scientific Instruments, vol. 83, no. 10, pp. 105117, 2012.
    [32] M. H. Kim, H. Y. Kim, H. C. Kim, D. Ahn, and D. G. Gweon, “Design and control of a 6-DOF active vibration isolation system using a halbach magnet array,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 4, pp. 2185-2196, 2016.
    [33] W. J. Kim, S. Verma, and H. Shakir, “Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems,” Precision Engineering, vol. 31, no. 4, pp. 337-350, 2007.
    [34] 王震,程雪岷,“快速反射镜研究现状及未来发展,”应用光学Journal of Applied Optics, vol. 40, no. 2, 2019.
    [35] J. D. Witt and T. M. Anderson, “Fast steering mirror,” U.S. Patent US2003/0197910 A1, 2003.
    [36] Y. H. Chang, G. Hao, and C. S. Liu, “Design and characterisation of a compact 4-degree-of-freedom fast steering mirror system based on double Porro prisms for laser beam stabilization,” Sensors and Actuators A: Physical, vol. 322, 2021.
    [37] Y. H. Chang, C. S. Liu, and C. C. Cheng, “Design and Characterisation of a Fast Steering Mirror Compensation System Based on Double Porro Prisms by a Screw-Ray Tracing Method, ” Sensors, vol. 18, no. 11, Nov 20 2018.
    [38] C. L. Hsieh, Y. H. Chang, Y. T. Chen, and C. S. Liu, “Design of VCM actuator with L-shape coil for smartphone cameras,” Microsystem Technologies, vol. 24, no. 2, pp. 1033-1040, 2017.
    [39] T. H. Kwon and J. S. Ro, “Analysis and optimal design of a novel actuator system for a camera module,” IEEE Access, vol. 9, pp. 3441-3450, 2021.
    [40] M. G. Song et al., “Development of small sized actuator with compliant mechanism for optical image stabilization,” IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 2369-2372, 2010.
    [41] 張育豪,“手機用微型音圈馬達相機模組之設計,”國立中正大學機械工程學系,碩士論文,2015。
    [42] G. Chen, P. Liu, and H. Ding, “Structural parameter design method for a fast-steering mirror based on a closed-loop bandwidth,” Frontiers of Mechanical Engineering, vol. 15, no. 1, pp. 55-65, 2019.
    [43] M. Hei, L.-c. Zhang, Q.-k. Zhou, Y.-f. Lu, and D.-p. Fan, “Model-based design method of two-axis four-actuator fast steering mirror system,” Journal of Central South University, vol. 22, no. 1, pp. 150-158, 2015.
    [44] D. J. Kluk, M. T. Boulet, and D. L. Trumper, “A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator,” Mechatronics, vol. 22, no. 3, pp. 257-270, 2012.
    [45] Y. Long, C. Wang, X. Dai, X. Wei, and S. Wang, “Modeling and analysis of a novel two-axis rotary electromagnetic actuator for fast steering mirror,” Journal of Magnetics, vol. 19, no. 2, pp. 130-139, 2014.
    [46] Z. Wang, B. Zhang, X. Li, and S. Zhang, “Study on application of model reference adaptive control in fast steering mirror system,” Optik, vol. 172, pp. 995-1002, 2018.
    [47] Q. Zh, P. Ben-Tzvi, and D. Fan, “Design and analysis of a fast steering mirror for precision laser beams steering,” Sensors & Transducers, vol. 5, 2009.
    [48] M. Abid, J. Yu, Y. Xie, and A. Salam, “Conceptual design, modeling and compliance characterization of a novel 2-DOF rotational pointing mechanism for fast steering mirror,” Chinese Journal of Aeronautics, vol. 33, no. 12, pp. 3564-3574, 2020.
    [49] Y. Long, J. Mo, X. Wei, C. Wang, and S. Wang, “Design of a moving-magnet electromagnetic actuator for fast steering mirror through finite element simulation method,” Journal of Magnetics, vol. 19, no. 3, pp. 300-308, 2014.
    [50] D. Wang, C. Watkins, S. Koppal, and H. Xie, “A silicon optical bench with vertically-oriented micromirrors for active beam steering,” Sensors and Actuators A: Physical, vol. 298, 2019.
    [51] G. Hao and X. He, “Designing a monolithic tip-tilt-piston flexure manipulator,” Archives of Civil and Mechanical Engineering, vol. 17, no. 4, pp. 871-879, 2017.
    [52] M. Riza and G. Hao, “A flexure motion stage system for light beam control,” Microsystem Technologies, vol. 25, no. 8, pp. 3185-3191, 2018.
    [53] D. Ahn, Y. M. Choi, and J. Jeong, “Design of a four-degree-of-freedom nano positioner utilizing electromagnetic actuators and flexure mechanisms,” Review of Scientific Instruments, vol. 86, no. 3, p. 035101, 2015.
    [54] R. Lin et al., “Design of A flexure-based mixed-kinematic XY high-precision positioning platform with large range,” Mechanism and Machine Theory, vol. 142, 2019.
    [55] H. Liu, S. Fan, X. Xie, Z. Zhang, and D. Fan, “Design and modeling of a novel monolithic parallel XY stage with centimeters travel range,” Advances in Mechanical Engineering, vol. 9, no. 11, 2017.
    [56] M. Liu, X. Zhang, and S. Fatikow, “Design and analysis of a high-accuracy flexure hinge,” Review of Scientific Instruments, vol. 87, no. 5, p. 055106, 2016.
    [57] J. Park, H. Lee, H. Kim, H. Kim, and D. Gweon, “Note: Development of a compact aperture-type XYθZ positioning stage,” Review of Scientific Instruments, vol. 87, no. 3, p. 036112, 2016.
    [58] L. Yangmin and X. Qingsong, “Development and assessment of a novel decoupled xy parallel micropositioning platform,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 1, pp. 125-135, 2010.
    [59] T. Shinshi, D. Shimizu, K. Kodeki, and K. Fukushima, “A fast steering mirror using a compact magnetic suspension and voice coil motors for observation satellites,” Electronics, vol. 9, no. 12, 2020.
    [60] 王代华,梁亮,陈浩,“一种二维快速控制反射镜,”中國專利 CN 108873320 A,2018.
    [61] M. J. Obrie and W. B. Smith, “Fast steering mirror,” U.S Patent US8,128,246 b1, 2012.
    [62] S. Kuiper, A. Dekker, and M. H. J. Lemmen, “Improved fast steering mirror,” European Patent EP 3432048, 2019.
    [63] 王曉瑜,“具削邊磁鐵特徵之音圈馬達手機相機模組設計,”國立中正大學機械工程學系,碩士論文,2016。
    [64] C. L. Hsieh, H. Y. Wang, Y. H. Chang, and C. S. Liu, “Design of VCM actuator with the chamfered edge magnet for cellphone,” Microsystem Technologies, vol. 23, no. 12, pp. 5293-5302, 2017.
    [65] C. H. Lau and H. Q. Hong, “Multi-axis voice coil motor,” Patent WO2018227589A1, 2018.
    [66] C. H. Lau and H. Q. Hong, “Multi-directionally movable voice coil motor, and dual-camera and dual-optical anti-vibration module,” Patent WO2019000214A1, 2019.
    [67] S. Sharma and S. W. Miller, “Camera with image sensor,” U.S. Patent US2019020822A1, 2019.
    [68] O. B. Kwon, S. H. Kim, and S. H. Oh, “Image photographing device having function for compensating for hand vibration,” U.S. Patent US8591493B2, 2016.
    [69] C. L. Hsieh, C. S. Liu, and C. C. Cheng, “Design of a 5 degree of freedom–voice coil motor actuator for smartphone camera modules,” Sensors and Actuators A: Physical, vol. 309, 2020.
    [70] H. Y. Kim, H. Kim, D.-G. Gweon, and J. Jeong, “Development of a novel spherical actuator with two degrees of freedom,” IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 532-540, 2015.
    [71] H. Kim, H. Kim, and D. Gweon, “Magnetic field analysis of a VCM spherical actuator,” Sensors and Actuators A: Physical, vol. 195, pp. 38-49, 2013.
    [72] H. Kim, H. Kim, D. Ahn, and D. Gweon, “Design of a new type of spherical voice coil actuator,” Sensors and Actuators A: Physical, vol. 203, pp. 181-188, 2013.
    [73] A. Heya, Y. Nakata, H. Ishiguro, and K. Hirata, “Two-degree-of-freedom actuator for robotic eyes,” International Conference on Electrical Machines, 2020.
    [74] L. Jae-Sung, K. Dae-kyong, B. Soo-whang, R. Se-hyun, and K. Byung-il, “Newly structured double excited two-degree-of-freedom motor for security camera,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4041-4044, 2008.
    [75] W. Chen, L. Zhang, L. Yan, and J. Liu, “Design and control of a three degree-of-freedom permanent magnet spherical actuator,” Sensors and Actuators A: Physical, vol. 180, pp. 75-86, 2012.
    [76] A. Heya, K. Hirata, S. Ezaki, and T. Ota, “Dynamic analysis of a new three-degree-of-freedom actuator for image stabilization,” IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, 2017.
    [77] A. Heya, K. Hirata, N. Niguchi, T. Yoshimoto, and T. Ota, “Dynamic Analysis of high-speed three-degree-of-freedom electromagnetic actuator for image stabilization,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1-4, 2017.
    [78] A. Heya, K. Hirata, and N. Niguchi, “Dynamic modeling and control of three-degree-of-freedom electromagnetic actuator for image stabilization,” IEEE Transactions on Magnetics, vol. 54, no. 11, pp. 1-5, 2018.
    [79] A. Heya and K. Hirata, “Experimental verification of three-degree-of-freedom electromagnetic actuator for image stabilization," Sensors, vol. 20, no. 9, 2020.
    [80] 付瀚毅,刘原原,“高均匀性小孔径激光照明系统,”液晶与显示Chinese Journal of Liquid Crystals and Displays, vol. 33, 7, 2018.
    [81] T. K. Tran, X. Chen, O. Svensen, and M. N. Akram, “Speckle reduction in laser projection using a dynamic deformable mirror, ” Optic Express, vol. 22, no. 9, pp. 11152-66, 2014.
    [82] J. Cheng et al., “Laser speckle suppression based on tunable metasurface,” Acta Photonica Sinica, vol. 49, no. 7, 2020.
    [83] H. Ishikawa, A. Shibase, W. Weng, M. Ono, and H. Furue, “Reduction of laser speckle noise by using particle-dispersed liquid crystals,” Molecular Crystals and Liquid Crystals, vol. 646, no. 1, pp. 93-98, 2017.
    [84] L. Deng et al., “Speckle reduction in laser projection based on a rotating ball lens,” Optics & Laser Technology, vol. 135, 2021.
    [85] M. N. Akram and X. Chen, “Speckle reduction methods in laser-based picture projectors,” Optical Review, vol. 23, no. 1, pp. 108-120, 2015.
    [86] 林坤緯,“使用擴散片降低雷射幾何擾動方法之最佳化設計與實驗驗證,”國立中央大學機械工程學系,碩士論文,2013。
    [87] C. S. Liu, K. W. Lin, and S. H. Jiang, “Development of precise autofocusing microscope based on reduction of geometrical fluctuations,” SICE Annual Conference, 2012.
    [88] C. S. Liu and K. W. Lin, “Numerical and experimental characterization of reducing geometrical fluctuations of laser beam based on rotating optical diffuser,” Optical Engineering, vol. 53, no. 12, 2014.
    [89] C. S. Liu and S. H. Jiang, “A novel laser displacement sensor with improved robustness toward geometrical fluctuations of the laser beam,” Measurement Science and Technology, vol. 24, no. 10, 2013.
    [90] Z. Jian, Z. Tong, Y. Ma, M. Wang, S. Jia, and X. Chen, “Laser beam modulation with a fast focus tunable lens for speckle reduction in laser projection displays,” Optics and Lasers in Engineering, vol. 126, 2020.
    [91] 成大馬達中心,“直流有刷馬達構造”。
    [92] StackExchange,“永磁直流有刷馬達作動示意圖,” https://physics.stackexchange.com/questions/496925/potential-drop-across-inductor-vs-potential-drop-across-rotating-coils-in-b-fi.
    [93] 茆尚勳,“直驅式跑步機用直流無刷馬達之設計,”國立成功大學機械工程學系,碩士論文,2002。
    [94] 劉祐維,“電動車窗用永磁有刷直流馬達之設計,”逢甲大學電機工程學系,碩士論文,2013。

    無法下載圖示 校內:2026-08-18公開
    校外:2026-08-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE