| 研究生: |
羅智暉 Lo, Chih-Hui |
|---|---|
| 論文名稱: |
碳同素異形體於聚芴薄膜內的混摻及其對螢光性質與晶相成長的影響 Dispersion of carbon allotropes within polyfluorene thin film and corresponding impacts on crystallization behavior and fluorescence emission |
| 指導教授: |
阮至正
Ruan, Jr-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 聚芴 、磊晶成長 、奈米碳管 |
| 外文關鍵詞: | polyfluorene, epitaxial organization, carbon nanotubes |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於聚芴分子擁有特殊的螢光性質,在藍光PLED(Polymer Light-Emitting Diode)的領域上受到相當大的關注。此研究藉由將[poly(9,9-dioctylfluorene), PFO]與六甲基苯(Hexamethylbenzene, HMB)的混合,使得PFO以較共平面的主鏈結構形成層列型液晶相(smectic)。進一步以實驗及模擬驗證了這個取向關係是由側鏈所主導,而非傳統的晶格對應關係。
此研究嘗試加入不同的小分子與碳同素異形體,來影響與調控PFO/HMB複合薄膜的性質.在發光性質方面,當PFO/HMB系統摻入可發黃光的小分子Rubrene後,所牽涉能量轉移可以產生不同波長的光.因此在比例的調控之下,可以觀察到此新穎的複材薄膜發出白光。
若摻入多壁奈米碳管(Multi-Wall Carbon Nanotube, MWCNT)於PFO/ HMB二元系統,HMB晶相的熱穩定性會有明顯的提升,並在高溫協助PFO發展出β晶相,進一步確定HMB晶相與PFO β晶相的關係。此外,隨著β晶相的成長,可以觀察到CNT被分離至非晶區。適當的溫度下,smectic液晶相可以緩慢地在HMB晶相上轉變成β晶相,CNT也因而同步緩慢地於非晶區聚集成束集(bundles),並以平行排列的方式垂直於PFO晶板的堆疊方向.
奈米碳球的衍生物PCBM([6,6]-phenyl-C61-butyric acid methyl ester),其聚集與晶相的成長可以於薄膜內協助傳遞電子,因此此研究亦嘗試將PCBM摻入PFO/HMB二元系統中,來探討相關的材料性質與開發PFO薄膜的應用。初步的實驗指出,受到HMB晶相的影響,PCBM的結晶排列會發生些許的調整,以發展出較佳的晶格對應。進一步的將PCBM摻入於PFO/HMB系統中,在 HMB晶相基材上,發現PFO的橢圓小簇團沿著特定的取向析出.這個表面形貌特徵及成長方式類似於束狀微胞(fringed micelle)所出現的型態。
The phase behavior of a binary eutectic system of poly(9,9-di-n-octyl-2,7- fluorene) (PFO) and hexamethylbenzene (HMB) has been explored. During cooling from homogeneous molten state, a smectic phase of PFO developed epitaxially on HMB substrate. Upon further annealing at 120 °C, epitaxial organization results in the growth of β crystal. In order to decipher the route of molecular organization, this research advanced to elucidate involved epitaxial interactions through simulation and experimental approaches. Instead of the conventional packing tendency of fluorene backbones, the settlement of side chains within underneath lattice grooves of HMB contact plane emerged as an unexpected dominant epitaxial relationship. After adding 1 wt % of carbon nanotubes into this HMB/PFO binary system, the extent of coplanar conformation of backbone is reduced by involved interactions. As a result, the re-absorption of emitted blue light is lessened, leading to stronger blue emission. Furthermore, during the phase transition route of comb-like PFO, mixed nanotubes can be segregated into amorphous regions, resulting in oriented arrays of nanotube bundles within thin film. Not only the parallel orientation, the segregation distance between nanotube bundles can be adjusted also by the crystallization rate of PFO, which helps to enhance the use of carbon nanotube within polymeric thin film.
1. Less, K. J.; Wilson, E. G. J. Phys. C: Solid State Phys 1973, 6, 3110-3120.
2. Bradley, D. D. C. Synthetic Metals 1993, 54, 401-415.
3. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bre das, J. L.; LoÈ gdlund, M.; Salaneck, W. R. Nature 1999, 397, 121-128.
4. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; MacKay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
5. Braun, D.; Heeger, A. J. Appl. Phys. Lett 1991, 58, 1982.
6. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Solid State Commun. 1991, 80, 605.
7. Deng, X. Y. Int. J. Mol. Sci. 2011, 12, 1575-1594.
8. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecular 1999, 32, 5810-5817.
9. Chen, S. H.; Chou, H. L.; Su, A. C.; Chen, S. A. Macromolecular 2004, 37, 6833-6838.
10. Chen, S. H.; Su, A. C.; Chen, S. A. J. Phys. Chem. B 2005, 109, 10067-10072.
11. Chen, S. H.; Su, A. C.; Su, C. H.; Chen, S. A. Macromolecular 2005, 38, 379-385.
12. Chen, S. H.; Su, A. C.; Su, C. H.; Chen, S. A. J. Phys, Chem. B 2006, 110, 4007-4013.
13. Tseng, K. L.; Ruan, J.; Lan, Y. K.; Wang, W. Z.; Su, A. C. Macromolecules 2013, 46, 1820-1831.
14. Wohlgenannt, M.; Jiang, X. M.; Vardeny, Z. V.; Janssen, R. A. J. Phys. Rev. Lett. 2002, 88, 197401.
15. Becker, K.; Lupton, J. M. J. Am. Chem. Soc. 2005, 127, 7306−7307.
16. Chen, L. P.; Zhu, L. G.; Shuai, Z. G. J. Phys. Chem. A 2006, 110, 13349−13354.
17. Peet, J.; Brocker, E.; Xu, Y.; Bazan, G. C. Adv. Mater. 2008, 20, 1882–1885.
18. Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Adv. Mater. 2007, 19, 2574–2579.
19. Kitts, C. C.; Vanden Bout, D. A. Polymer 2007, 48, 2322-2330.
20. Huang, L.; Huang, X.; Sun, G.; Gu, C.; Lu, D.; Ma Y. J. Phys. Chem. C 2012, 116, 7993−7999.
21. Caruso, M. E.; Anni, M. Phys. Rev. B 2007, 6, 054207.
22. Liu, C.; Wang, Q.; Tian, H.; Liu, J.; Geng, Y.; Yan, D. Macromolecules 2013, 46, 3025−3030.
23. Dias, F. B.; Morgado, J.; Macüanita, A. L.; da Costa, F. P.; Burrows, H. D.; Monkman, A. P. Macromolecules 2006, 39, 5854-5864.
24. Misaki, M.; Ueda, Y.; Nagamatsu, S.; Yoshida,Y.; Tanigaki, N.; Yase, K. Macromolecules 2004, 37, 6926-6931.
25. Seifert, H. Angewandte Chemie 1953, 65, 34-35.
26. Frankenheim, M. Annalen der Physik 1836, 37, 516-522.
27. Cartier, L.; Okihara, T.; Ikada, Y.; Tsuji, H.; Puiggali, J.; Lotz, B. Polymer 2000, 41, 8909-8919.
28. Brockway, L.; Robertson, J. M. J. Chem. Soc. 1939, 1324-1332.
29. Wellingh, S.; Rybnikar, F.; Baer, E. J. Macromol. Sci.-Phys. 1974, 10, 1-39.
30. Brinkmann, M. Macromolecules 2007, 40, 7532-7541.
31. Brinkmann, M.; Charoenthai, N.; Traiphol, R.; Piyakulawat, P.; Wlosnewski, J.; Asawapirom, U. Macromolecules 2009, 42, 8298–8306.
32. Whitehead, K. S.; Grell, M.; Bradley, D. D. C.; Jandke, M.; Strohriegl, P. Appl. Phys. Lett. 2000, 76, 2946.
33. Park, D.; Kim, H.; Jang, Y.; Cho, J. H.; Hwang, M.; Lee, H. S.; Lim, J. A.; Cho, K. Organic Electronics 2006, 7, 514–520.
34. Gadisa, A.; Oosterbaan, W. D.; Vandewal, K.; Bolse´e, J. C.; Bertho, S.; D’Haen, J.; Lutsen, L.; Vanderzande, D.; Manca, J. V. Adv. Funct. Mater. 2009, 19, 3300–3306.
35. Knaapila, M.; Dias, F. B.; Garamus, V. M.; Alma´sy, L.; Torkkeli, M.; Leppa1nen, K.; Galbrecht, F.; Preis, E.; Burrows, H. D.; Scherf, U.; Monkman, A. P. Macromolecules 2007, 40, 9398-9405.
36. Bright, D. W.; Dias, F. B.; Galbrecht, F.; Scherf, U.; Monkman, A. P. Adv. Funct. Mater. 2009, 19, 67–73.
37. Dyke, C. A.; Tour, J. M. J. Phys. Chem. A 2004, 108, 1151–11159.
38. Green, M. J. Polym Int 2010, 59, 1319–1322.
39. Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv Mater 2005, 17, 17–29.
40. Kim, S. W.; Kim, T.; Kim, Y. S.; Choi, H. S.; Lim, H. J.; Yang, S. J.; Park, C. R. Carbon 2012, 50, 3-33.
41. Garg, A.; Sinnott, S. B. Chem. Phys. Lett. 1998, 295, 273.
42. Müller, M. T.; Krause, B.; Pötschke, P. Polymer 2012, 53, 3079-3083.
43. Tkalya, E. E.; Ghislandi, M.; de With, G.; Koning, C. E. Current Opinion in Colloid & Interface Science 2012, 17, 225–232.
44. Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E. J. Phys. Chem. B 2003, 107, 13357-13367.
45. Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. Nano Lett. 2003, 3, 269.
46. Huang, J. E.; Li, X. H.; Xu, J. C.; Li, H. L. Carbon 2003, 41, 2731–2736.
47. Rice, N. A.; Soper, K.; Zhou, N.; Merschrod, E.; Zhao, Y. Chem. Commun. 2006, 4937–4939.
48. Moniruzzaman, M.; Winey, K. I. Macromolecules 2006, 39, 5194.
49. Peng, H.; Sun, X. Chemical Physics Letters 2009, 471, 103–105.
50. Chen, H.; Xue, Q.; Zheng, Q.; Xie, J.; Yan, K. J. Phys. Chem. C 2008, 112, 16514–16520.
51. Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, 4122–4129.
52. Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, 9349–9355.
53. Zheng, X.; Xu, Q. J. Phys. Chem. B 2010, 114, 9435–9444.
54. Curran, S.; Ajayan, P. M.; Blau, W.; Carroll, D. L.; Coleman, J. N.; Dalton, A. B.; Davey, A. P.; Drury, A.; McCarthy, B.; Maier, S.; Strevens, A. AdV. Mater. 1998, 10, 1091.
55. Foroutan, M.; Nasrabadi, A. T. J. Phys. Chem. B 2010, 114, 5320–5326.
56. Yang, M.; Koutsos, V.; Zaiser, M. J. Phys. Chem. B 2005, 109, 10009-10014.
57. Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Nature Nanotechnology 2007, 2, 640 – 646.
58. Hwang, J. Y.; Nish, A.; Doig, J.; Douven , S.; Chen, C. W.; Chen, L. C.; Nicholas, R. J. J. AM. CHEM. SOC. 2008, 130, 3543-3553.
59. Chen, J.; Liu, H.; Weimer, W. A.; Halls, M. D.; Waldeck, D. H.; Walker G. C. J. AM. CHEM. SOC. 2002, 124, 9034-9035.
60. McCarthy, B.; Coleman, J. N.; Czerw, R.; Dalton, A. B.; in het Panhuis, M.; Maiti, A.; Drury, A.; Bernier, P.; Nagy, J. B.; Lahr, B.; Byrne, H. J.; Carroll, D. L.; Blau, W. J. J. Phys. Chem. B 2002, 106, 2210-2216.
校內:2019-08-29公開