| 研究生: |
黃達言 Huang, Ta-Yen |
|---|---|
| 論文名稱: |
應用於立方衛星的感應耦合電漿源射頻離子微推進器之研發 Development of a Miniature Radio-Frequency Ion Thruster with Inductively Coupled Plasma (ICP) Source for CubeSat Propulsion |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 比衝 、射頻 、感應耦合電漿 、離子推進器 |
| 外文關鍵詞: | Specific impulse, radio-frequency, Inductively coupled plasma, Langmuir probe |
| 相關次數: | 點閱:189 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著太空產業的發展,衛星發射成本的降低,將衛星送入地球軌道的趨勢越來越大,這為許多國家研究太空業提供了有吸引力的動力。相較於化學推進器,電力推進系統通常比化學推進具有更高比衝的性能,以減少推進劑的體積重量並在可長時間運行。離子推進器的優勢在於具有高比衝的性能來執行長久任務。在這項研究中,感應耦合電漿(ICP) 在射頻 (RF) 波段的發展下已被用作電漿源。通過使用多級集成電路產生高頻信號來產生射頻電能。然而,電路功率放大電路必須連接到阻抗匹配電路以將射頻功率傳輸到螺線管線圈。否則,可能會引起反射功率,從而危及射頻產生電路。這種感應耦合電漿源可以在高推進劑利用效率和低功耗下提供高密度電漿源。此外,高頻電磁場在低氣壓條件下電離推進劑形成感應耦合電漿。靜電場通過高壓電差加速離子以形成離子束。為了中和推進器的電位能,需要安裝發射電子的中和器,在推進器的下游中和離子束。SIMION 軟件用於模擬加速區域的離子路徑和離子束受到電場影響之軌跡。感應耦合電漿源的特性和離子推進器之性能將由量測系統診斷。最終,離子推進器的性能可以在 80W – 120W 總輸入功率下提供 1200 –1633.3 秒的比衝和 7.6 –13.8 mN 的推力。推進器效率可達10-13%,質量利用效率可達12% – 16%。總之,微型射頻離子推進器可成為立方體衛星任務電力推進系統之候選者。
Decreasing satellite launch costs have prompted numerous countries to investigate the benefits of satellite launches. Ion thrusters can provide thrust on the order of millinewtons with a high specific impulse of 1000 s for long-term station keeping . This study investigated an inductively coupled plasma (ICP) as an ion source. This ICP source can produce high-density plasma and has high propellant utilization efficiency and low power consumption. The ICP source was induced by a 13.56-MHz electromagnetic field and by supplying argon propellant gas into the radio frequency (RF) ion thruster at low gas pressures. The ions were accelerated along the electrostatic field gradient by using a potential bias to form an ion beam. SIMION was used to simulate the trajectory and distribution of the ion beam. An electron-emitting neutralizer must be located downstream of the thruster to neutralize the potential of the ion thruster. A Langmuir probe was used to measure the electron temperature and plasma density. A Faraday cup was used to determine the ion current of the ion thruster. The parameters of the ICP ion source and the performance of the ion beam were evaluated using the measurement systems. The miniature RF ion thruster achieved 1200 – 1633 s of specific impulse and 7.6 – 13.8 mN of thrust at 80 W of total input power. The thruster efficiency was 10% – 13%, and the mass utilization efficiency was 12% – 16%.
[1] D. Folta, N. Bosanac, A. Cox, and K. Howell, "The Lunar IceCube Mission Challenge: Attaining Science Orbit Parameters from a Constrained Approach Trajectory," 2017.
[2] M. Tsay, J. Frongillo, K. Hohman, and B. Malphrus, "LunarCube: A Deep Space 6U CubeSat with Mission Enabling Ion Propulsion Technology," 2015.
[3] D. M. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters. Wiley, 2008.
[4] NASA, "In-Space Propulsion," 2020. [Online]. Available: https://www.nasa.gov/smallsat-institute/sst-soa-2020/in-space-propulsion.
[5] M. Martinez-Sanchez and J. Pollard, "Spacecraft Electric Propulsion—An Overview," Journal of Propulsion and Power - J PROPUL POWER, vol. 14, pp. 688-699, 09/01 1998, doi: 10.2514/2.5331.
[6] C. Miyake and F. McKevitt, "Performance characterization tests of a 1-kW resistojet using hydrogen, nitrogen and ammonia as propellants," in 21st Joint Propulsion Conference, (Joint Propulsion Conferences: American Institute of Aeronautics and Astronautics, 1985.
[7] 李後毅, "先導型電弧火箭系統之自主研發," 成功大學航空太空工程學系學位論文, 國立成功大學, 2010. [Online]. Available: http://dx.doi.org/10.6844/NCKU.2010.02134
[8] P. Shaw, V. Lappas, and C. Underwood, "Development of the ¼ PPT propulsion module for STRaND a 3 U CubeSat," 2012.
[9] J. Kolbeck, A. Anders, I. Beilis, and M. Keidar, "Micro-propulsion based on vacuum arcs," Journal of Applied Physics, vol. 125, p. 220902, 06/14 2019, doi: 10.1063/1.5081096.
[10] G. I. THRUSTER, P. Kindberg, and J. Praks, "DEVELOPMENT OF A MINIATURE," 2017.
[11] P. Kindberg, "Development of a miniature Gridded ion thruster," 2017.
[12] G. P. Sutton and O. Biblarz, Rocket Propulsion Elements. Wiley, 2001.
[13] P. Puig-suari, C. Turner, and R. Twiggs, "CubeSat: The Development and Launch Support Infrastructure for Eighteen Different Satellite Customers on One Launch," 01/01 2001.
[14] R. Funase et al., "50kg-class Deep Space Exploration Technology Demonstration Micro-spacecraft PROCYON," 2014.
[15] U. Kokal, "Development of a Mili-Newton Level Thrust Stand for Thrust Measurements of Electric Propulsion Systems and UK90 Hall Effect Thruster," 2018.
[16] H.-C. Lee, J.-Y. Bang, and C.-W. Chung, "Effects of RF bias power on electron energy distribution function and plasma uniformity in inductively coupled argon plasma," Thin Solid Films, vol. 519, pp. 7009-7013, 08/01 2011, doi: 10.1016/j.tsf.2011.01.218.
[17] E. A. Kralkina, K. V. Vavilin, I. I. Zadiriev, P. A. Nekliudova, and G. V. Shvydkiy, "Optimization of discharge parameters in an inductive RF ion thruster prototype," Vacuum, vol. 167, pp. 136-144, 2019/09/01/ 2019, doi: https://doi.org/10.1016/j.vacuum.2019.05.041.
[18] M. Lieberman and A. Lichtenberg, "Principles of Plasma Discharges and Materials Processing: Second Edition," Principles of Plasma Discharges and Materials Processing, 2nd Edition, by Michael A. Lieberman, Alan J. Lichtenberg, pp. 800. ISBN 0-471-72001-1. Wiley-VCH , September 2003., vol. 30, 09/01 2003, doi: 10.1002/0471724254.
[19] V. Godyak, "Capacitive and Inductive RF Plasma
Sources for Industrial Applications," 2011. [Online]. Available: https://nccavs-usergroups.avs.org/wp-content/uploads/PAG2011/2011_7godyak.pdf.
[20] L. T. Williams and M. L. R. Walker, "Initial Performance Evaluation of a Gridded Radio Frequency Ion Thruster," Journal of Propulsion and Power, vol. 30, no. 3, pp. 645-655, 2014/05/01 2014, doi: 10.2514/1.B35018.
[21] M. Mehdizadeh, Microwave/RF Applicators and Probes for Material Heating, Sensing, and Plasma Generation, Second Edition. 2015.
[22] P. Chabert and N. Braithwaite, Physics of Radio-Frequency Plasmas. Cambridge: Cambridge University Press, 2011.
[23] D. J. Griffiths, Introduction to Electrodynamics. Cambridge University Press, 2017.
[24] M. Tsay, J. Frongillo, and K. Hohman, "Iodine-Fueled Mini RF Ion Thruster for CubeSat Applications," Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, 2015.
[25] H. Leiter et al., RIT-µX - High Precision Micro Ion Propulsion System Based on RF-Technology. 2007.
[26] B. Wolf, Handbook of ion sources. Boca Raton; New York; London: CRC Press (in English), 1995.
[27] D. Warner, "Advanced Cathodes for Next Generation Electric Propulsion Technology," p. 174, 03/01 2008.
[28] C. Gasdaska, P. Falkos, M. Robin, V. Hruby, N. Demmons, and R. McCormick, Testing of Carbon Nanotube Field Emission Cathodes. 2004.
[29] H. Watanabe, T. Nakabayashi, S. Kasagami, J. Aoyagi, and H. Takegahara, Experimental Investigation of Inductively Coupled Plasma Cathode for the Application to Ion Thrusters. 2011.
[30] M. Tsay, J. Frongillo, J. Zwahlen, and L. Paritsky, "Maturation of Iodine Fueled BIT-3 RF Ion Thruster and RF Neutralizer," in 52nd AIAA/SAE/ASEE Joint Propulsion Conference, (AIAA Propulsion and Energy Forum: American Institute of Aeronautics and Astronautics, 2016.
[31] M. M. Tsay and M. Martínez-Sánchez, "Simple Performance Modeling of a Radio-Frequency Ion Thruster," 2007.
[32] M. Tsay, K. Hohman, N. Rosenblad, E. Ehrbar, M. Robin, and C. C. Farnell, "Micro Radio-Frequency Ion Propulsion System," 2012.
[33] D. Feili, D. Dicara, H. Leiter, L. Serafini, A. Bulit, and J. Gonzalez del Amo, "IEPC-2013-90 Experimental validation of RIT Micropropulsion Subsystem performance at EPL - Final for approval," 10/06 2013.
[34] M. Tsay, J. Model, C. Barcroft, J. Frongillo, J. Zwahlen, and C. Feng, Integrated Testing of Iodine BIT-3 RF Ion Propulsion System for 6U CubeSat Applications. 2017.
[35] R. Lobbia and B. Beal, "Recommended Practice for Use of Langmuir Probes in Electric Propulsion Testing," Journal of Propulsion and Power, vol. 33, pp. 1-16, 04/04 2017, doi: 10.2514/1.B35531.
[36] A. I. Systems, "Faraday Cup Design for the ILIS1 Ignition Test," May 19 2020. [Online]. Available: https://appliedionsystems.com/faraday-cup-design-for-the-ilis1-ignition-test/.
[37] 姚齊, "13.56 MHz射頻功率電源供應器之研製," 成功大學電機工程學系學位論文, 國立成功大學, 2016. [Online]. Available: https://www.AiritiLibrary.com/Publication/Index/U0026-2507201600363700
[38] C. Nguyen, "Radio-Frequency Integrated-Circuit Engineering: Nguyen/Radio-Frequency Integrated-Circuit Engineering," 2015.
[39] "CRC handbook of chemistry and physics," 1977. [Online]. Available: https://search.library.wisc.edu/catalog/999469374502121.
[40] S. Bhattarai, "Interpretation of Double Langmuir Probe I-V Characteristics at Different Ionospheric Plasma Temperatures," American Journal of Engineering and Applied Sciences, vol. 10, pp. 882-889, 04/01 2017, doi: 10.3844/ajeassp.2017.882.889.
[41] M. Naz, A. Ghaffar, N. Rehman, S. Naseer, and M. Zakaullah, "Double and Triple Langmuir Probes Measurements in Inductively Coupled Nitrogen Plasma," Progress In Electromagnetics Research, vol. 114, pp. 113-128, 01/01 2011, doi: 10.2528/PIER10110309.
[42] Y.-i. Sung, H. Lim, and R. Houk, "Diagnostic studies of a low-pressure inductively coupled plasma in argon using a double Langmuir probe," Journal of Analytical Atomic Spectrometry - J ANAL ATOM SPECTROM, vol. 17, pp. 565-569, 06/07 2002, doi: 10.1039/b110219m.