簡易檢索 / 詳目顯示

研究生: 王嘉瑋
Wang, Chia-Wei
論文名稱: 具三重刺激響應特性之高分子微胞於控制藥物釋放上之應用
Polymeric Micelles with Triple Stimuli-Responsive characteristics for Controlled Drug Release
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 雙親性嵌段共聚高分子溫度響應高分子酸鹼值敏感性高分子氧化還原敏感性高分子藥物釋放細胞毒性
外文關鍵詞: amphiphilic block copolymer, thermo-responsive polymer, pH-responsive polymer, redox-sensitive polymer, drug release, cytotoxicity
相關次數: 點閱:109下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對具有三種環境響應性之雙親性嵌段共聚高分子Poly(ɛ-caprolactone)-SS-b-poly[triethylene glycol methacrylate-co- 6-(methacrylamido)hexanoic acid]於水中自組裝形成的高分子微胞進行奈米結構、環境應答、藥物包覆釋放及細胞毒性之探討與檢測。
    雙親性嵌段共聚高分子以poly(ɛ-caprolactone) (PCL)為疏水性鏈段形成微胞內核、以具有溫度敏感性質之親水性單體triethylene glycol methacrylate (TEGMA)形成微胞外殼,內核可包覆疏水性藥物Doxorubicin (DOX),外殼因其親水性於血液中有良好溶解度。在親水性鏈段上修飾酸鹼響應單體6-aminohexanoic acid (AHA),親疏水鏈段之間以具有氧化還原響應性的雙硫鍵連接,使其具有特定環境響應之功能。
    經由調整具酸鹼值響應單體AHA所占比例可以調整微胞的最低臨界溶解溫度(lower critical solution temperature, LCST),使LCST於酸性環境低於體溫37℃,於中性環境下高於體溫37℃,分別對應癌細胞中溶酶體環境以及正常人體血液環境之酸鹼值,而雙硫鍵在高還原劑環境中,模擬腫瘤細胞質液之高濃度穀胱甘肽(Glutathione tripeptide, GSH),發生斷鍵使微胞結構崩解,達到在血液中穩定包覆不釋放DOX,在腫瘤細胞中快速釋放藥物之目的。在細胞毒性實驗中,包覆藥物微胞對子宮頸癌細胞Hela cell有良好的毒殺效果,顯示雙親性嵌段共聚高分子微胞應用於疏水性藥物之載體,其奈米結構與環境響應之觸發釋放機制,是相當具有發展潛力的。

    In this research, we investigated the nanosturctures, stimuli-responsive properties, drug encapsulation and release, and cytotoxicity to tumor cells of the triple stimuli-responsive polymeric micelles. The micelles were assembled of amphiphilic block copolymers, [PCL-SS-b-P(TEGMA-co-AHA)]. PCL is the hydrophobic core of micelle to encapsulate hydrophobic drug, Doxorubicin (DOX). PTEGMA is thermo-sensitive polymer as hydrophilic shell of micelle. The micelles were well-dispersed in aqueous solution because of the hydrophilic shell. In addition, we introduced pH-sensitive moieties (AHA) to the hydrophilic block. The connection between hydrophobic block and hydrophilic block is disulfide bond, which is redox-sensitive. Therefore, the micelles were stimuli-responsive.
      By adjusting the composition of AHA and PTEGMA, the LCST of micelles is higher than body temperature (37℃) at neutral environment and lower than body temperature at acidic environment. Neutral and acidic environment simulated the condition in human circulatory system and in tumor cells, respectively. The disulfide bond is prone to rapid cleavage under a reductive environment through thiol–disulfide exchange reactions. Tumor tissues are highly reducing compared with normal tissues, with high concentrations of glutathione tripeptide (GSH). As a result, the drug-loading micelles were stable in the neutral and mildly oxidizing environment, which simulated circulatory system, and rapidly released drug in the acidic and highly reducing environment, which simulated tumor cells.
      In the in vitro cytotoxicity test, Hela cancer cells were cultured with micelles. Blank micelles showed low toxicity, and drug-loading micelles successfully killed cancer cells. After a series of experiment, it showed that amphiphilic block copolymer is a promising material for controlled drug release.

    摘要 I Abstract II 誌謝 X 目錄 XII 流程圖目錄 XV 表目錄 XVI 圖目錄 XVII 公式目錄 XX 第一章、緒論 1 1.1研究背景與文獻回顧 1 1.1.1雙親性嵌段共聚高分子(Amphiphilic block copolymers,ABCs) 1 1.1.2功能性高分子 6 1.1.3雙親性嵌段共聚高分子於藥物傳遞之應用 17 1.1.4 微胞製備 25 1.2研究動機與目的 27 第二章、實驗 28 2.1實驗藥品 28 2.2實驗方法 31 2.2.1單體合成 31 2.2.2 高分子聚合 33 2.2.3 微胞製備 36 2.2.4 臨界微胞濃度(Critical micelle concentration, CMC)檢測 36 2.2.5 Lower critical solution temperature (LCST)測試 37 2.2.6藥物包覆與釋放 38 2.2.7細胞培養與毒性測試 40 2.3儀器鑑定 42 2.3.1 Gel permeation chromatography (GPC) 42 2.3.2 Nuclear Magnetic Resonance (NMR) 43 2.3.3 Dynamic Light Scattering (DLS) 43 2.3.4 Transmission Electron Microscopy (TEM) 44 2.3.5 Ultraviolet-Visible Spectroscopy (UV-vis.) 44 2.3.6 Photoluminescence Spectroscopy (PL) 45 2.3.7 Enzyme-linked immunosorbent assay (ELISA) Reader 45 第三章、結果與討論 47 3.1聚合與鑑定 47 3.1.1 2-Hydroxyethyl-2’-(bromoisobutyryl)ethyl Disulfide (HO-SS-iBuBr)起始劑合成 47 3.1.2 TEGMA單體合成 48 3.1.3 NSMA單體合成 49 3.1.4 SS-Poly(ɛ-Caprolactone) (SS-PCL)聚合 50 3.1.5雙親性嵌段共聚高分子poly(ɛ-caprolactone)-SS-b-poly[triethylene glycol methacrylate-co- N-hydroxysuccinimide methacrylate] [PCL-SS-b-P(TEGMA-co-NSMA),SS-PTN]之合成 52 3.1.6雙親性嵌段共聚高分子 [PCL-SS-b-P(TEGMA-co-AHA)](SS-PTAHA)合成 53 3.2微胞的製備與性質鑑定 56 3.2.1溫度敏感性質 56 3.2.2 CMC性質測試 60 3.3藥物包覆與釋放測試 63 3.3.1藥物包覆 63 3.3.2藥物釋放 66 3.4細胞毒性測試 68 第四章、結論與未來工作 71 第五章、參考文獻 72

    [1] Ito, S., et al., Synthesis of well-controlled graft polymers by living anionic polymerization towards exact graft polymers. Polymer Chemistry, 2014. 5(19): p. 5523.
    [2] Crotty, S., et al., Polymer architectures via mass spectrometry and hyphenated techniques: A review. Anal Chim Acta, 2016. 932: p. 1-21.
    [3] Letchford, K. and H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm, 2006. 65(3): p. 259-69.
    [4] Stephan Förster* and M. Antonietti, Amphiphilic Block Copolymers in StructureControlled Nanomaterial Hybrids. 1998.
    [5] Sun, Y., et al., Synthesis and characterization of pH-sensitive poly(itaconic acid)-poly(ethylene glycol)-folate-poly(l-histidine) micelles for enhancing tumor therapy and tunable drug release. J Colloid Interface Sci, 2015. 458: p. 119-29.
    [6] Kazunori Kataoka, Atsushi Harada , and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. 2001.
    [7] Yu, Y., et al., A degradable brush polymer–drug conjugate for pH-responsive release of doxorubicin. Polym. Chem., 2015. 6(6): p. 953-961.
    [8] Torchilin, V.P., Structure and design of polymeric surfactant-based drug delivery systems. 2001.
    [9] Blanazs, A., S.P. Armes, and A.J. Ryan, Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and their Biological Applications. Macromol Rapid Commun, 2009. 30(4-5): p. 267-77.
    [10] ISRAELACHVIL, J.N., D.J. MITCHELL, and B.W. NINHA, Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. 1975.
    [11] Smart, T., et al., Block copolymer nanostructures. Nano Today, 2008. 3(3): p. 38-46.
    [12] Choucair, A. and A. Eisenberg, Control of amphiphilic block copolymer morphologies using solution conditions. The European Physical Journal E, 2003. 10(1): p. 37-44.
    [13] Yousefpour Marzbali, M. and A. Yari Khosroushahi, Polymeric micelles as mighty nanocarriers for cancer gene therapy: a review. Cancer Chemother Pharmacol, 2017. 79(4): p. 637-649.
    [14] Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules, 2012. 45(10): p. 4015-4039.
    [15] Matyjaszewski, K. and J. Xia, Atom transfer radical polymerization. Chemical reviews, 2001. 101(9): p. 2921-2990.
    [16] Patten, T.E. and K. Matyjaszewski, Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998. 10(12): p. 901-915.
    [17] Karimi, M., et al., Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev, 2016. 45(5): p. 1457-501.
    [18] Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev, 2006. 58(15): p. 1655-70.
    [19] Y. Okahata, H. Noguchi, and T. Seki, Thermoselective Permeation from a Polymer-Grafted Capsule Membrane*. 1986.
    [20] Yan,, H., et al., Template-Guided Synthesis and Individual Characterization of Poly(N-isopropylacrylamide)-Based Microgels. 2005.
    [21] Liu, R., M. Fraylich, and B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications. Colloid and Polymer Science, 2009. 287(6): p. 627-643.
    [22] Zardad, A.-Z., et al., A Review of Thermo- and Ultrasound-Responsive Polymeric Systems for Delivery of Chemotherapeutic Agents. Polymers, 2016. 8(10): p. 359.
    [23] Dai, S., P. Ravi, and K.C. Tam, pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008. 4(3): p. 435-449.
    [24] Panyam, J. and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003. 55(3): p. 329-347.
    [25] Gil, E. and S. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
    [26] Prabaharan, M., et al., Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials, 2009. 30(29): p. 5757-66.
    [27] Chen, C.-Y., et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013. 34(18): p. 4501-4509.
    [28] Raina, S., & Missiakas, D. (1997). Making and breaking disulfide bonds. Annual Reviews in Microbiology, 51(1), 179-202.
    [29] Vert, M., Li, S. M., Spenlehauer, G., & Guérin, P. (1992). Bioresorbability and biocompatibility of aliphatic polyesters. Journal of materials science: Materials in medicine, 3(6), 432-446.
    [30] Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R., & Turner, N. D. (2004). Glutathione metabolism and its implications for health. The Journal of nutrition, 134(3), 489-492.
    [31] Schafer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free radical biology and medicine, 30(11), 1191-1212.
    [32] Meng, F., Hennink, W. E., & Zhong, Z. (2009). Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 30(12), 2180-2198.
    [33] Li, J., Huo, M., Wang, J., Zhou, J., Mohammad, J. M., Zhang, Y., ... & Zhang, Q. (2012). Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials, 33(7), 2310-2320.
    [34] Khorsand Sourkohi, B., Cunningham, A., Zhang, Q., & Oh, J. K. (2011). Biodegradable block copolymer micelles with thiol-responsive sheddable coronas. Biomacromolecules, 12(10), 3819-3825.
    [35] Torchilin, V.P., Targeted Pharmaceutical Nanocarriers for Cancer Therapy and Imaging. 2007.
    [36] Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-27.
    [37] Kazunori Kataoka , Atsushi Harada , and Y. Nagasaki, Block copolymer micelles for drug delivery: design, characterization and biological significance. 2001.
    [38] Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004. 56(11): p. 1649-59.
    [39] Zhang, C., et al., Imaging intracellular anticancer drug delivery by self-assembly micelles with aggregation-induced emission (AIE micelles). ACS Appl Mater Interfaces, 2014. 6(7): p. 5212-20.
    [40] Zhou, Z., et al., Aggregation Induced Emission Mediated Controlled Release by Using a Built-In Functionalized Nanocluster with Theranostic Features. J Med Chem, 2016. 59(1): p. 410-8.
    [41] DeConti, R. C., Toftness, B. R., Lange, R. C., & Creasey, W. A. (1973). Clinical and pharmacological studies with cis-diamminedichloroplatinum (II). Cancer Research, 33(6), 1310-1315.
    [42] Kumari, A., S.K. Yadav, and S.C. Yadav, Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces, 2010. 75(1): p. 1-18.
    [43] Stolnik, S., L. Illum, and S. Davis, Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 1995. 16(2): p. 195-214.
    [44] Nishiyama, N. and K. Kataoka, Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function, in Polymer Therapeutics II. 2006, Springer. p. 67-101.
    [45] Miyata, K., Christie, R. J., & Kataoka, K. (2011). Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 71(3), 227-234.
    [46] Mishra, D., J.R. Hubenak, and A.B. Mathur, Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. Journal of Biomedical Materials Research Part A, 2013. 101(12): p. 3646-3660.
    [47] Zhang, L., et al., Nanoparticles in medicine: Therapeutic applications and developments. Clinical Pharmacology & Therapeutics, 2008. 83(5): p. 761-769.
    [48] Domínguez, A., Fernández, A., González, N., Iglesias, E., & Montenegro, L. (1997). Determination of critical micelle concentration of some surfactants by three techniques. Journal of Chemical Education, 74(10), 1227.
    [49] Gaucher, G., et al., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release, 2005. 109(1): p. 169-188.
    [50] Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16(1): p. 3-27.
    [51] Jette, K.K., et al., Preparation and drug loading of poly (ethylene glycol)-block-poly (ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharmaceutical research, 2004. 21(7): p. 1184-1191.
    [52] Shi, M., J. Lu, and M.S. Shoichet, Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. Journal of Materials Chemistry, 2009. 19(31): p. 5485-5498.
    [53] Miyata, K., R.J. Christie, and K. Kataoka, Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 2011. 71(3): p. 227-234.
    [54] Nishiyama, N. and K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & therapeutics, 2006. 112(3): p. 630-648.
    [55] Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 2007. 32(8-9): p. 962-990.
    [56] Nakayama, M., J. Akimoto, and T. Okano, Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. Journal of drug targeting, 2014. 22(7): p. 584-599.
    [57] Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science, 2004. 29(12): p. 1173-1222.
    [58] Madhulika Pradhan, D.S., Manju Rawat Singh, Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. Journal of Controlled Release, 2013. 170(3): p. 380-395.
    [59] Mishra, D., J.R. Hubenak, and A.B. Mathur, Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J Biomed Mater Res A, 2013. 101(12): p. 3646-60.
    [60] Sanna, V., N. Pala, and M. Sechi, Targeted therapy using nanotechnology: focus on cancer. International journal of nanomedicine, 2014. 9: p. 467.
    [61] Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12 Part 1): p. 6387-6392.
    [62] Kedar, U., et al., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(6): p. 714-729.
    [63] Ge, Z. and S. Liu, Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev, 2013. 42(17): p. 7289-325.
    [64] Chen, Y., et al., Multifunctional mesoporous silica nanocarriers for stimuli-responsive target delivery of anticancer drugs. RSC Adv., 2016. 6(94): p. 92073-92091.
    [65] Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., ... & Baker, J. R. (2002). Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical research, 19(9), 1310-1316.
    [66] Chen, W., Zhong, P., Meng, F., Cheng, R., Deng, C., Feijen, J., & Zhong, Z. (2013). Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of controlled release, 169(3), 171-179.
    [67] Yang, L., et al., Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharm Res, 2009. 26(10): p. 2332-42.
    [68] Ai, X., et al., Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian Journal of Pharmaceutical Sciences, 2014. 9(5): p. 244-250.
    [69] Chang, L., et al., pH-sensitive nanoparticles prepared from amphiphilic and biodegradable methoxy poly(ethylene glycol)-block-(polycaprolactone-graft-poly(methacrylic acid)) for oral drug delivery. Polym. Chem., 2013. 4(5): p. 1430-1438.
    [70] Gou, J., et al., Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances. Biomacromolecules, 2015. 16(9): p. 2920-9.
    [71] J.B Liu, Y.H.X., C. Allen, Polymer–Drug Compatibility: A Guide to the Development of Delivery Systems for the Anticancer Agent, Ellipticine. Journal of Pharmaceutical Sciences, 2004. 93(1): p. 132-143.
    [72] Li, H., et al., A Near-Infrared Photothermal Effect-Responsive Drug Delivery System Based on Indocyanine Green and Doxorubicin-Loaded Polymeric Micelles Mediated by Reversible Diels-Alder Reaction. Macromol Rapid Commun, 2015. 36(20): p. 1841-9.
    [73] Liang, Y., et al., Terminal modification of polymeric micelles with pi-conjugated moieties for efficient anticancer drug delivery. Biomaterials, 2015. 71: p. 1-10.
    [74] Panja, S., et al., A branched polymer as a pH responsive nanocarrier: Synthesis, characterization and targeted delivery. Polymer, 2015. 61: p. 75-86.
    [75] Zhang, C.Y., et al., pH-sensitive amphiphilic copolymer brush Chol-g-P(HEMA-co-DEAEMA)-b-PPEGMA: synthesis and self-assembled micelles for controlled anti-cancer drug release. RSC Adv., 2014. 4(76): p. 40232-40240.
    [76] Sant, V.P., D. Smith, and J.C. Leroux, Novel pH-sensitive supramolecular assemblies for oral delivery of poorly water soluble drugs: preparation and characterization. J Control Release, 2004. 97(2): p. 301-12.
    [77] Han, S., M. Hagiwara, and T. Ishizone, Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo (ethylene glycol) methyl ether methacrylates. Macromolecules, 2003. 36(22): p. 8312-8319.
    [78] Batz, H.G., G. Franzmann, and H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angewandte Chemie International Edition in English, 1972. 11(12): p. 1103-1104.
    [79] Letchford, K., & Burt, H. (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European journal of pharmaceutics and biopharmaceutics, 65(3), 259-269.
    [80] Jones, M.-C. and J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111.
    [81] Gillies, E.R. and J.M. Fréchet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate chemistry, 2005. 16(2): p. 361-368.
    [82] Kim, C., & Hsieh, Y. L. (2001). Wetting and absorbency of nonionic surfactant solutions on cotton fabrics. Colloids and Surfaces A: Physicochemical and engineering aspects, 187, 385-397.
    [83] 王士豪. 螢光高分子混合微胞之製備與使用螢光能量轉移監控藥物包覆及釋放. 成功大學化學工程學系學位論文, (2017). 1-100.

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE