簡易檢索 / 詳目顯示

研究生: 陳穎哲
Chen, Ying-Zhe
論文名稱: 考慮模糊需求之耗損性商品存貨控制模式
Deterioration Inventory model with fuzzy demand
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理科學系
Department of Industrial Management Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 60
中文關鍵詞: 耗損性商品模糊需求模糊排序存貨
外文關鍵詞: fuzzy demand, inventory, deterioration
相關次數: 點閱:84下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 存貨管理在企業的經營中,一直扮演著相當重要的角色。在實務上,一個存貨管理者最直接面對到的難題,就是需求的不確定性,在過去有關不確定性環境下的存貨模型,大都在討論存貨模型中成本係數模糊化的問題,而本研究主要考慮需求在不確定下之批量訂購存貨政策,所討論的模型將包括經濟批量訂購模式與允許缺貨之經濟批量訂購模式。
    近年來,耗損性商品的存貨管理問題開始受到重視。在傳統的存貨模型中,通常是假設存貨式永不耗損的。而在現實生活裡,不耗損的存貨幾乎是不存在的,因此耗損性存貨管理問題的討論有其存在之必要性,但是考量到耗損性的問題時,也往往擴大了存貨模型的困難度。
    本研究將耗損性因素考慮於模糊化的存貨模式中,考慮耗損率為固定常數的情況,並為了應用之廣泛性,將模糊需求率之歸屬函數定義為一般型式之模糊數,希望能藉此提高存貨模式在實務上之應用性,而本研究之解法主要是應用Yager之模糊數排序法,直接對具有模糊性之總成本函數來排序,不同於以往相關文獻之先將總成本函數解模糊化為一個確定數後再利用數學規劃的方法求解。

    none

    摘要……………………………………………………………………i 目錄……………………………………………………………………ii 圖目錄…………………………………………………………………iv 表目錄…………………………………………………………………v 符號表…………………………………………………………………vi 第一章緒論……………………………………………………………1 1.1研究動機 …………………………………………………………1 1.2研究目的 …………………………………………………………2 1.3研究方法 …………………………………………………………2 1.4研究架構與流程 …………………………………………………2 第二章文獻探討………………………………………………………4 2.1存貨模式概述 ……………………………………………………4 2.2存貨模式與存貨問題之分類 ……………………………………4 2.2.1存貨模式的分類 ………………………………………………4 2.2.2存貨問題的分類 ………………………………………………5 2.3模糊理論 …………………………………………………………7 2.3.1模糊集合的基本定義 …………………………………………7 2.3.2模糊數的定義及兩種常用的模糊數 …………………………8 2.3.3模糊數的基本運算 ……………………………………………9 2.3.4 Yager排序法 …………………………………………………10 2.4耗損性物料介紹 …………………………………………………11 2.4.1耗損性產品的特性 ……………………………………………11 2.4.2耗損性產品的分類 ……………………………………………12 2.5耗損性產品的存貨模式 …………………………………………13 2.6不確定環境下的存貨模式 ………………………………………15 第三章 數學模式架構 ………………………………………………17 3.1 模糊需求下耗損性商品存貨在不允許缺貨之模式……………18 3.1.1 模式基本假設…………………………………………………18 3.1.2 模式之建立……………………………………………………18 3.1.3 模式之求解……………………………………………………20 3.1.4 模式之分析……………………………………………………22 3.1.5 模式之比較……………………………………………………23 3.2 模糊需求下耗損性商品存貨在允許缺貨之模式………………24 3.2.1 模式基本假設…………………………………………………24 3.2.2 模式之建立……………………………………………………24 3.2.3 模式之求解……………………………………………………26 3.2.4 模式之分析……………………………………………………29 3.2.5 模式之比較……………………………………………………30 3.3 小結………………………………………………………………31 第四章 例題演算與分析 ……………………………………………32 4.1 例題演算與分析…………………………………………………32 4.2 小結………………………………………………………………41 第五章 結論與未來研究方向 ………………………………………42 5.1 結論………………………………………………………………42 5.2 未來研究方向……………………………………………………43 參考文獻………………………………………………………………45 附錄……………………………………………………………………49

    Benkherouf, L., On an inventory model with deteriorating items and decreasing time-varying demand and shortages, European Journal of Operational Research, Vol.86, Iss.2, 293-299, 1998.

    Chakrabarty, T., An EOQ model for items with Weibull distribution deterioration, shortages and trended demand: An extension of Philip’s model, Computers and Operations Research, Vol.25, No.7, 649-657, 1998.

    Covert, R. P. and G. C. Philip, An EOQ model for items with Weibull distribution deterioration, AIIE Transactions, Vol.5, No.4, 323-326, 1973.

    Dave, U. and L. K. Patel,(T, Si)policy inventory model for deteriorating items with time proportional demand, Journal of Operational Research Society, Vol.40, No.6, 827-830, 1981

    Ghare, P. M. and G. F. Schrader, A model for exponentially decaying inventory, Journal of Industrial Engineering, Vol.14, No.5, 238-243, 1963.

    Giri, B. C., A. Goswami and K. S. Chaudhuri, An EOQ model for deteriorating items with time varying demand and cost, Journal of the Operational Research Society, Vol.47, No.11, 1398-1405, 1996.

    Goswami, A. and K. S. Chaudhuri, An EOQ model for deteriorating items with shortages and a linear trend in demand, Journal of the Operational Research Society, Vol.42, No.12, 1105-1110, 1991.

    Hariga, M., An EOQ model for deteriorating items with shortages and time-varying demand, Journal of the Operational Research Society, Vol.46, No.3, 398-404, 1995.

    Hollier, R. H. and K. L. Mak, Inventory replenishment policies for deteriorating items in a declining market, International Journal of Production Research, Vol.21, No.6, 813-826, 1983.

    Hsu, W. K., EOQ model with backorder and fuzzy demands, Proceedings pf the sixth Asia Pacific Management Conference, Taiwan, 98-105, 2000 11.14~15.

    Jalan, A. K., R. R. Giri and K. S. Chaudhuri, EOQ model for items with Weibull distribution deterioration, shortages and trended demand, International Journal of Systems Science, Vol.27, No.8, 851-855, 1996.

    Katagiri, H. and H. Ishii, Fuzzy inventory problems for perishable commodities, European Journal of Operational Research, Vol.138, 545-553, 2002.

    Kao, C. and W. K. Hsu, A single-period inventory model with fuzzy demand, Computers and Mathematics with Applications, Vol.43, 841-848, 2002a.

    Kao, C. and W. K. Hsu, Lot size-reorder point inventory model with fuzzy demands, Computers and Mathematics with Applications, Vol.43, 1291-1302, 2002b.

    McCahon, C. S., Fuzzy set theory applied to production and inventory control. Ph.D. thesis, Kansas University, 1983.

    Park, K. S., Fuzzy-set theoretic interpretation of economic order quantity, IEEE Transactions Systems, Man, Cybernetics, SMC-17, 1082-1084, 1987.

    Philip, G. C., A generalized EOQ model for items with Weibull Distribution, AIIE Transactions, Vol.6, 159-162, 1974.

    Raafat, F., Survey of literature on continuously deteriorating inventory model, Journal of the Operation Research Society, Vol.42, No.1, 27-37, 1991.

    Roy, T. K. and M. Maiti, A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, European Journal of Operational Research, Vol.99, 425-432, 1997.

    Sachan, R. S., On(T, Si)policy inventory model for deteriorating items with time proportional demand, Journal of Operational Research Society, Vol.35, No.11, 1013-1119, 1984.

    Silver, E. A., Operations research in inventory management: a review and critique, Operation Research, Vol.29, No.4, 628-645, 1981.

    Tadikamalla, P. R., An EOQ inventory model for items with Gamma distributed deterioration, AIIE Transactions, Vol.10, No.1, 100-103, 1978.

    Vujoševic, M., D. Petrovic and R. Petrovic, EOQ formula when inventory cost is fuzzy, International Journal of Production Economics, Vol.45, 499-504, 1996.

    Wee, H. M., A deterministic lot-size inventory model for deteriorating items with shortages and a declining market, Computer and Operations Research, Vol.22, No.3, 345-356, 1995.

    Yao, J. S. and H. M. Lee, Fuzzy inventory with backorder for fuzzy order quantity, Information Sciences, Vol.93, 283-319, 1996.

    Yao, J. S. and J. S. Su, Fuzzy inventory with backorder for fuzzy total demand based on interval-valued fuzzy set, European Journal of Operational Research, Vol.124, 390-408, 2000.

    Zadeh, L. A., Fuzzy set, Information and Control, Vol.21, 338-353, 1965.

    Zadeh, L. A., The conception of a linguistic variable and its application to approximate reasoning-Part 1, Information Sciences, Vol.8, 199-249,1975.

    Zadeh, L. A., The conception of a linguistic variable and its application to approximate reasoning-Part 2, Information Sciences, Vol.8, 301-357,1975.

    Zadeh, L. A., Fuzzy sets as a basic for a theory of possibility, Fuzzy Sets and Systems, Vol.1, 3-28, 1978.

    Zimmermann, H. J., Fuzzy Set Theory and Its Applications, 5th ed., Kluwer-Nijhoff, Boston, 1991.

    下載圖示 校內:2006-07-08公開
    校外:2008-07-08公開
    QR CODE