簡易檢索 / 詳目顯示

研究生: 吳書瑋
Wu, Shu-Wei
論文名稱: 應用異丙基丙烯醯胺與幾丁聚醣共聚物之溫感型水凝膠,以化學性交聯增強其機械強度並用作為軟骨組織工程支架
Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels by chemical cross-linking as scaffolds for cartilage tissue engineering
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 75
中文關鍵詞: 溫感型水凝膠雙硫建交聯巰基修飾幾丁聚醣異丙基丙烯醯胺乙醯半胱氨酸生醫材料機械性質
外文關鍵詞: Thermo-sensitive hydrogel, Disulfide bonds, Thiolated chitosan, NIPAAm, N-acetyl-cysteine, biomaterial mechanical property
相關次數: 點閱:115下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來許多的臨床手術已經被發展出來用以治療骨軟骨損傷,但其成效相當有限,易產生不預期的纖維軟骨增生;雖然骨軟骨自體移植或同種異體移植物被視為黃金標準,但礙於不易取得或捐贈數量少,仍舊不是長久之計。隨著科技日新月異,許多科學家開始導入組織工程學的概念來改善現有傳統治療的缺點,在眾多材料方面,可注射式高分子提供了多項優點,如可在原位成型並與受體組織緊密接合、富有高度含水性以及良好的型態順應性等,除此之外,由於近年微創手術的興起,可注射式水凝膠之特性恰好適用於關節鏡治療,降低手術風險與縮短住院時程。
      本篇文章中,我們成功地合成出無毒且具溫感性的異丙基丙烯醯胺與幾丁聚醣共聚物水凝膠,並以巰基修飾形成雙流鍵交聯。在過去,異丙基丙烯醯胺接枝幾丁聚醣共聚物已被證實具有良好的生物相容性,並且能夠於注射入體內後快速進行相轉變(由液態變為固態),極具有成為細胞載體與植入物之潛力。然而,力學強度的不足遏止了其在生物醫學上的應用,為了克服該限制,我們使用醫療上常用的抗氧化劑N-乙酰基半胱氨酸,以碳二亞胺化學接枝至幾丁聚醣支鏈,形成化學性交聯以增強其機械性質。
      透過Ellman試劑,我們發現巰基的接枝率會受到碳二亞胺濃度之影響,在氧化反應後,我們得到修飾過後的水凝膠能達到九倍以上的強度提升,其壓縮模量約為11.4千帕斯卡,並且再加上流變學分析,結果發現儲能模量與交聯程度有著正向關係,也再一次驗證強度的提升。此外,由掃描式電子顯微鏡觀察到微觀下每組水凝膠都具有良好的孔洞互連性,同時也導致其他物理性質,如溶脹能、相變溫度與蛋白質貼附能力的改變。利用存活螢光染色及細胞活性分析,我們發現該水膠對於三種不同的細胞類型(間質幹細胞、纖維母細胞、成骨細胞)皆不影響其生物機能並表現極佳的存活率;在動物皮下植入結果上,發現於注射後四周後實驗鼠並沒有出現急性的體外排斥現象,生長狀態亦無異常。最後,從微電腦斷層掃描技術與術後外觀評分,顯示混合間質幹細胞的水凝膠,不論是否經過修飾,在骨軟骨缺損模型上皆達到不錯的填補率與近似於原先軟骨的平滑表面。
      總結以上,我們認為以異丙基丙烯醯胺接枝幾丁聚醣的溫感型水凝膠相當適合用作為軟骨組織工程的生醫材料,並且強化機械性質後更能夠促使該智慧型高分子用於其他不同組織需求。

      Currently numerous clinical treatments for osteochondral injury have been developed but the unexpected outcome still existed such as fibrocartilage formation and insufficient donor autografts or allografts. As an advance of technological knowledge and biological science, many researchers have engaged in an innovative strategy, tissue engineering, considered as a potential to address the shortage of conventional treatments. Among various biomaterials, an injectable polymer has caught many attentions depending on the advantages including in situ gelation to attach host tissue, high hydration and shape adaptability. Additionally, minimal invasive surgery is preferable than traditional operation with less risks and shorter hospital stay. Combination with injectable hydrogels has been a promising strategy for clinical need statements.
      In the present study, we fabricated a non-toxic thermo-sensitive NIPAAm-g-chitosan (NC) hydrogels with thiol modification for disulfide crosslinking strategy, abbreviated as “TNC”. Previously, NC copolymer has been proven to have excellent biocompatibility and rapid phase transition after injection, suitable to serve as cell carriers or implanted scaffolds. However, weak mechanical properties significantly restricted its application in the biomedical field. In order to overcome this limitation, we introduced thiol side chains into chitosan by covalently conjugating N-acetyl-cysteine (NAC) with carbodiimide chemistry to strengthen mechanical properties.
      Ellman’s assay showed degree of thiol substation increased as carbodiimide concentration leading to higher cross-linking. After oxidation of thiols for creating disulfide bonds, modified NC hydrogels did improve the compressive modulus over 9 folds (11.4kPa). Additionally, oscillatory frequency sweep showed the positive correlation of storage modulus and cross-linking density. Interconnected microstructure appeared in NC based hydrogels shown in SEM image resulting in tunable physical properties such as swelling capacity, phase transition temperature and protein absorption. In vitro Live/Dead and MTS assay represented a great proliferation and viability for mesenchymal stem cells (MSC), fibroblast and osteoblast. In vivo subcutaneous implantation further confirmed biocompatibility and biodegradability of synthetic hydrogels with minor foreign body reaction at 4 week. Subsequently osteochondral defect in rat model with Micro-CT analysis and gross scoring system illustrated a better coverage and smoother cartilage surface in MSC encapsulated NC and TNC groups compared to sham group. In sum, we suggested that the thiol-modified thermo-sensitive polysaccharide hydrogels are promising to be a cell-laden biomaterial for cartilage tissue regeneration and the strengthened stiffness with disulfide crosslinking broadened the application of NIPAAm-based smart polymer towards diverse ranges of tissue.

    中文摘要 I Abstract III 致謝 V List of Tables X List of Figures XI Chapter 1: Introduction 1 1.1 Biology and Composition of Articular Cartilage 1 1.2 Articular Cartilage Defects and Osteoarthritis: Pathology and Clinical Solutions 3 1.3 Cartilage Repair in Tissue Engineering 4 1.3.1 Cell Source: Infra-patellar Fat Pad derived Mesenchymal Stem Cells 5 1.3.2 Biomaterial Scaffolds: Thiol-modified NIPPAm-g-chitosan (TNC) 7 1.3.3 Stimulation 9 1.4 Motivation and Aim 12 Aim I: 12 Aim II: 12 Aim III: 13 Chapter 2: Materials and Methods 14 2.1 Research Design 14 2.2 Instruments 14 2.3 Materials 16 2.4 Synthesis of NIPAAm-g-Chitosan Hydrogels (NC group) 18 2.5 Synthesis of Thiol-modified NIPAAm-g-Chitosan Hydrogels (TNC group) 18 2.6 Characterization of NC and TNC hydrogels 19 2.6.1 Free Thiol Content Colorimetric Analysis 19 2.6.2 FTIR and 1H NMR 19 2.6.3 Sol-gel Temperature and Swelling Ratio 20 2.6.4 Microstructure Characterization 21 2.6.5 Protein Absorption 21 2.6.6 Rheological Characterization 22 2.6.7 Mechanical Characterization 22 2.7 In vitro analysis of prepared hydrogels 23 2.7.1 Isolation and Culture of Infra-patellar Fat Pad Derived Mesenchymal Stem Cells 23 2.7.2 Cytotoxicity and Cell Proliferation Measurements 24 2.7.3 Chondrogenic Differentiation Analysis 25 2.8 In vivo Wistar Rats Animal Models 26 2.8.1 Ethic Statement 26 2.8.2 Animal Surgical Procedure for Osteochondral Defect Creation 27 2.8.3 Subcutaneous Biocompatibility Test 27 2.8.4 Gross Morphology Evaluation 28 2.8.5 Micro CT analysis 29 2.8.6 Histological Analysis 29 2.9 Statistical analysis 30 Chapter 3: Results 31 3.1 Synthesis and Modification of NIPAAm-g-chitosan hydrogels 31 3.2 Characterization of NC and TNC Hydrogels 33 3.2.1 Chemical Structure Analysis and Thiol Numbers Measurement 33 3.2.2 Microenvironment of Hydrogels 36 3.2.3 Lower Critical Solution Temperature (LCST) 37 3.2.4 Swelling Properties 37 3.2.5 Rheological Behavior and Compressive Modulus 38 3.2.6 Protein Absorption 40 3.3 In vitro analysis of NC and TNC hydrogels 41 3.3.1 Cell Viability and Cell Proliferation Assay 41 3.3.2 Chondrogenic Differentiation Analysis 45 3.4 Hydrogel Scaffolds for Osteochondral Defect Repair and In Vivo Biocompatibility in Wistar Rat Model 46 3.4.1 Subcutaneous Biocompatibility Test 46 3.4.2 Regeneration of Osteochondral Defect 49 3.4.3 Micro-CT reconstruction analysis 55 Chapter 4: Discussion 57 Chapter 5: Conclusion 66 Chapter 6: Limitations and Future works 66 Reference 67

    [1] Bhosale, A. M., Richardson, J. B., Articular cartilage: structure, injuries and review of management, Br Med Bull 87 (2008) 77-95.
    [2] Temenoff, J. S., Mikos, A. G., Review: tissue engineering for regeneration of articular cartilage, Biomaterials 21(5) (2000) 431-440.
    [3] Eckstein, F., Reiser, M., Englmeier, K. H., Putz, R., In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging - from image to data, from data to theory, Anat Embryol 203(3) (2001) 147-173.
    [4] Ofek, Gidon, Athanasiou, Kyriacos, Micromechanical properties of chondrocytes and chondrons: Relevance to articular cartilage tissue engineering, 2007.
    [5] Nabzdyk, C., Pradhan, L., Molina, J., Perin, E., Paniagua, D., Rosenstrauch, D., Auricular Chondrocytes - From Benchwork to Clinical Applications, In Vivo 23(3) (2009) 369-380.
    [6] Sophia Fox, A. J., Bedi, A., Rodeo, S. A., The basic science of articular cartilage: structure, composition, and function, Sports Health 1(6) (2009) 461-8.
    [7] Responte, D. J., Natoli, R. M., Athanasiou, K. A., Collagens of articular cartilage: structure, function, and importance in tissue engineering, Crit Rev Biomed Eng 35(5) (2007) 363-411.
    [8] Knudson, C. B., Knudson, W., Cartilage proteoglycans, Semin Cell Dev Biol 12(2) (2001) 69-78.
    [9] Zhang, L., Hu, J., Athanasiou, K. A., The role of tissue engineering in articular cartilage repair and regeneration, Crit Rev Biomed Eng 37(1-2) (2009) 1-57.
    [10] Buckwalter, J. A., Mankin, H. J., Articular cartilage .1. Tissue design and chondrocyte-matrix interactions, J Bone Joint Surg Am 79a(4) (1997) 600-611.
    [11] Di Bella, Claudia, Fosang, Amanda, Donati, Davide M., Wallace, Gordon G., Choong, Peter F. M., 3D Bioprinting of Cartilage for Orthopedic Surgeons: Reading between the Lines, Frontiers in Surgery 2(39) (2015).
    [12] Helmick, C. G., Felson, D. T., Lawrence, R. C., Gabriel, S., Hirsch, R., Kwoh, C. K., et al., Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I, Arthritis Rheum 58(1) (2008) 15-25.
    [13] O'Driscoll, S. W., The healing and regeneration of articular cartilage, J Bone Joint Surg Am 80(12) (1998) 1795-812.
    [14] Hunziker, E. B., Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?, Osteoarthritis Cartilage 7(1) (1999) 15-28.
    [15] Hunziker, E. B., Rosenberg, L. C., Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane, J Bone Joint Surg Am 78(5) (1996) 721-33.
    [16] Yanai, T., Ishii, T., Chang, F., Ochiai, N., Repair of large full-thickness articular cartilage defects in the rabbit: the effects of joint distraction and autologous bone-marrow-derived mesenchymal cell transplantation, J Bone Joint Surg Br 87(5) (2005) 721-9.
    [17] McNickle, A. G., Provencher, M. T., Cole, B. J., Overview of existing cartilage repair technology, Sports Med Arthrosc 16(4) (2008) 196-201.
    [18] Richter, D. L., Schenck, R. C., Jr., Wascher, D. C., Treme, G., Knee Articular Cartilage Repair and Restoration Techniques: A Review of the Literature, Sports Health 8(2) (2016) 153-60.
    [19] Asik, M., Ciftci, F., Sen, C., Erdil, M., Atalar, A., The Microfracture Technique for the Treatment of Full-Thickness Articular Cartilage Lesions of the Knee: Midterm Results, Arthroscopy 24(11) (2008) 1214-1220.
    [20] Clair, B. L., Johnson, A. R., Howard, T., Cartilage repair: current and emerging options in treatment, Foot Ankle Spec 2(4) (2009) 179-88.
    [21] Hangody, L., Fules, P., Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience, J Bone Joint Surg Am 85-A Suppl 2 (2003) 25-32.
    [22] Johnstone, B., Alini, M., Cucchiarini, M., Dodge, G. R., Eglin, D., Guilak, F., et al., Tissue engineering for articular cartilage repair--the state of the art, Eur Cell Mater 25 (2013) 248-67.
    [23] Nerem, R. M., Sambanis, A., Tissue engineering: from biology to biological substitutes, Tissue Eng 1(1) (1995) 3-13.
    [24] Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C., Athanasiou, K. A., Repair and tissue engineering techniques for articular cartilage, Nat Rev Rheumatol 11(1) (2015) 21-34.
    [25] Musumeci, G., Loreto, C., Castorina, S., Imbesi, R., Leonardi, R., Castrogiovanni, P., Current concepts in the treatment of cartilage damage. A review, Ital J Anat Embryol 118(2) (2013) 189-203.
    [26] Musumeci, Giuseppe, Castrogiovanni, Paola, Leonardi, Rosalia, Trovato, Francesca Maria, Szychlinska, Marta Anna, Di Giunta, Angelo, et al., New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review, World Journal of Orthopedics 5(2) (2014) 80-88.
    [27] Jorgensen, C., Gordeladze, J., Noel, D., Tissue engineering through autologous mesenchymal stem cells, Curr Opin Biotech 15(5) (2004) 406-410.
    [28] Guilak, F., Estes, B. T., Diekman, B. O., Moutos, F. T., Gimble, J. M., 2010 Nicolas Andry Award: Multipotent adult stem cells from adipose tissue for musculoskeletal tissue engineering, Clin Orthop Relat Res 468(9) (2010) 2530-40.
    [29] Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. I., et al., Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage, J Bone Joint Surg Am 76(4) (1994) 579-92.
    [30] Raghunath, J., Salacinski, H. J., Sales, K. M., Butler, P. E., Seifalian, A. M., Advancing cartilage tissue engineering: the application of stem cell technology, Curr Opin Biotechnol 16(5) (2005) 503-9.
    [31] Koga, H., Muneta, T., Nagase, T., Nimura, A., Ju, Y. J., Mochizuki, T., et al., Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit, Cell Tissue Res 333(2) (2008) 207-15.
    [32] do Amaral, Rjfc, Almeida, H. V., Kelly, D. J., O'Brien, F. J., Kearney, C. J., Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy, Stem Cells Int 2017 (2017) 6843727.
    [33] Liu, Y. R., Buckley, C. T., Almeida, H. V., Mulhall, K. J., Kelly, D. J., Infrapatellar Fat Pad-Derived Stem Cells Maintain Their Chondrogenic Capacity in Disease and Can be Used to Engineer Cartilaginous Grafts of Clinically Relevant Dimensions, Tissue Eng Pt A 20(21-22) (2014) 3050-3062.
    [34] Ren, K. X., He, C. L., Xiao, C. S., Li, G., Chen, X. S., Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering, Biomaterials 51 (2015) 238-249.
    [35] Guo, B. L., Ma, P. X., Synthetic biodegradable functional polymers for tissue engineering: a brief review, Sci China Chem 57(4) (2014) 490-500.
    [36] Sontjens, S. H. M., Nettles, D. L., Carnahan, M. A., Setton, L. A., Grinstaff, M. W., Biodendrimer-based hydrogel scaffolds for cartilage tissue repair, Biomacromolecules 7(1) (2006) 310-316.
    [37] Hou, Q. P., De Bank, P. A., Shakesheff, K. M., Injectable scaffolds for tissue regeneration, J Mater Chem 14(13) (2004) 1915-1923.
    [38] Fujishige, S., Kubota, K., Ando, I., Phase-Transition of Aqueous-Solutions of Poly(N-Isopropylacrylamide) and Poly(N-Isopropylmethacrylamide), J Phys Chem-Us 93(8) (1989) 3311-3313.
    [39] Das, D., Ghosh, P., Ghosh, A., Haldar, C., Dhara, S., Panda, A. B., et al., Stimulus-Responsive, Biodegradable, Biocompatible, Covalently Cross-Linked Hydrogel Based on Dextrin and Poly(N-isopropylacrylamide) for in Vitro/in Vivo Controlled Drug Release, Acs Appl Mater Inter 7(26) (2015) 14338-14351.
    [40] Lencina, M. M. S., Iatridi, Z., Villar, M. A., Tsitsilianis, C., Thermoresponsive hydrogels from alginate-based graft copolymers, Eur Polym J 61 (2014) 33-44.
    [41] Sershen, S. R., Westcott, S. L., Halas, N. J., West, J. L., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J Biomed Mater Res 51(3) (2000) 293-8.
    [42] Mellati, A., Kiamahalleh, M. V., Madani, S. H., Dai, S., Bi, J., Jin, B., et al., Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering, J Biomed Mater Res A 104(11) (2016) 2764-74.
    [43] Takezawa, T., Mori, Y., Yoshizato, K., Cell culture on a thermo-responsive polymer surface, Biotechnology (N Y) 8(9) (1990) 854-6.
    [44] Amir, M. N. I., Julkapli, N. M., Hamid, S. B. A., Incorporation of chitosan and glass substrate for improvement in adsorption, separation, and stability of TiO2 photodegradation, Int J Environ Sci Te 13(3) (2016) 865-874.
    [45] Spizzirri, U. G., Iemma, F., Cirillo, G., Altimari, I., Puoci, F., Picci, N., Temperature-sensitive hydrogels by graft polymerization of chitosan and N-isopropylacrylamide for drug release, Pharm Dev Technol 18(5) (2013) 1026-34.
    [46] Mellati, A., Dai, S., Bi, J. X., Jin, B., Zhang, H., A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells, Rsc Adv 4(109) (2014) 63951-63961.
    [47] Mi, F. L., Tan, Y. C., Liang, H. F., Sung, H. W., In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant, Biomaterials 23(1) (2002) 181-91.
    [48] Schmidt, C. E., Baier, J. M., Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering, Biomaterials 21(22) (2000) 2215-31.
    [49] Yan, L. P., Wang, Y. J., Ren, L., Wu, G., Caridade, S. G., Fan, J. B., et al., Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications, J Biomed Mater Res A 95(2) (2010) 465-75.
    [50] Liu, X., Chen, Y., Huang, Q., He, W., Feng, Q., Yu, B., A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate, Carbohydr Polym 110 (2014) 62-9.
    [51] Wu, Z. M., Zhang, X. G., Zheng, C., Li, C. X., Zhang, S. M., Dong, R. N., et al., Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release, Eur J Pharm Sci 37(3-4) (2009) 198-206.
    [52] Miles, K. B., Ball, R. L., Matthew, H. W., Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds, Carbohydr Polym 139 (2016) 1-9.
    [53] Goldring, M. B., Tsuchimochi, K., Ijiri, K., The control of chondrogenesis, J Cell Biochem 97(1) (2006) 33-44.
    [54] Fortier, L. A., Barker, J. U., Strauss, E. J., McCarrel, T. M., Cole, B. J., The role of growth factors in cartilage repair, Clin Orthop Relat Res 469(10) (2011) 2706-15.
    [55] Seidel, J. O., Pei, M., Gray, M. L., Langer, R., Freed, L. E., Vunjak-Novakovic, G., Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation, Biorheology 41(3-4) (2004) 445-58.
    [56] Bennell, K. L., Hinman, R. S., A review of the clinical evidence for exercise in osteoarthritis of the hip and knee, J Sci Med Sport 14(1) (2011) 4-9.
    [57] Chang, N. J., Lin, C. C., Li, C. F., Wang, D. A., Issariyaku, N., Yeh, M. L., The combined effects of continuous passive motion treatment and acellular PLGA implants on osteochondral regeneration in the rabbit, Biomaterials 33(11) (2012) 3153-63.
    [58] Tagil, M., Aspenberg, P., Cartilage induction by controlled mechanical stimulation in vivo, J Orthop Res 17(2) (1999) 200-4.
    [59] Sah, R. L., Kim, Y. J., Doong, J. Y., Grodzinsky, A. J., Plaas, A. H., Sandy, J. D., Biosynthetic response of cartilage explants to dynamic compression, J Orthop Res 7(5) (1989) 619-36.
    [60] Mauck, Robert L., Soltz, Michael A., Wang, Christopher C. B., Wong, Dennis D., Chao, Pen-Hsiu Grace, Valhmu, Wilmot B., et al., Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels, Journal of Biomechanical Engineering 122(3) (2000) 252-260.
    [61] Elder, S. H., Goldstein, S. A., Kimura, J. H., Soslowsky, L. J., Spengler, D. M., Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading, Annals of biomedical engineering 29(6) (2001) 476-82.
    [62] Li, Xuezhou, Ding, Jianxun, Zhuang, Xiuli, Chang, Fei, Wang, Jincheng, Chen, Xuesi, Chitosan-Based Scaffolds for Cartilage Regeneration, in: Dutta, Pradip Kumar (Ed.), Chitin and Chitosan for Regenerative Medicine, Springer India, New Delhi, 2016, pp. 61-82.
    [63] Liu, S. Q., Qiu, B., Chen, L. Y., Peng, H., Du, Y. M., The effects of carboxymethylated chitosan on metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 gene expression in cartilage of experimental osteoarthritis, Rheumatol Int 26(1) (2005) 52-7.
    [64] Kuo, Yung-Chih, Wang, Cheng-Chin, Effect of bovine pituitary extract on the formation of neocartilage in chitosan/gelatin scaffolds, Journal of the Taiwan Institute of Chemical Engineers 41(2) (2010) 150-156.
    [65] Kim, I. L., Mauck, R. L., Burdick, J. A., Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid, Biomaterials 32(34) (2011) 8771-82.
    [66] Jin, R., Moreira Teixeira, L. S., Dijkstra, P. J., Karperien, M., van Blitterswijk, C. A., Zhong, Z. Y., et al., Injectable chitosan-based hydrogels for cartilage tissue engineering, Biomaterials 30(13) (2009) 2544-51.
    [67] Koh, Leng-Duei, Cheng, Yuan, Teng, Choon-Peng, Khin, Yin-Win, Loh, Xian-Jun, Tee, Si-Yin, et al., Structures, mechanical properties and applications of silk fibroin materials, Prog Polym Sci 46(Supplement C) (2015) 86-110.
    [68] Patil, Archana S., Gadad, Anand P., Hiremath, Ravindra D., Dandagi, Panchakshari M., Exploration of the Effect of Chitosan and Crosslinking Agent Concentration on the Properties of Dual Responsive Chitosan-g-Poly (N-Isopropylacrylamide) Co-polymeric Particles, Journal of Polymers and the Environment (2017).
    [69] Kafedjiiski, K., Jetti, R. K. R., Foger, F., Hoyer, H., Werle, M., Hoffer, M., et al., Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery, Int J Pharmaceut 343(1-2) (2007) 48-58.
    [70] Krauland, A. H., Hoffer, M. H., Bernkop-Schnurch, A., Viscoelastic properties of a new in situ gelling thiolated chitosan conjugate, Drug Dev Ind Pharm 31(9) (2005) 885-93.
    [71] Teng, D. Y., Wu, Z. M., Zhang, X. G., Wang, Y. X., Zheng, C., Wang, Z., et al., Synthesis and characterization of in situ cross-linked hydrogel based on self-assembly of thiol-modified chitosan with PEG diacrylate using Michael type addition, Polymer 51(3) (2010) 639-646.
    [72] Cui, Z., Lee, B. H., Pauken, C., Vernon, B. L., Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels, J Biomed Mater Res A 98(2) (2011) 159-66.
    [73] Wang, S., Kempen, D. H., Yaszemski, M. J., Lu, L., The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses, Biomaterials 30(20) (2009) 3359-70.
    [74] Koh, Y. G., Choi, Y. J., Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis, Knee 19(6) (2012) 902-7.
    [75] Liu, Q., Hu, X., Zhang, X., Duan, X., Yang, P., Zhao, F., et al., Effects of mechanical stress on chondrocyte phenotype and chondrocyte extracellular matrix expression, Sci Rep 6 (2016) 37268.
    [76] Yamaguchi, S., Aoyama, T., Ito, A., Nagai, M., Iijima, H., Tajino, J., et al., The Effect of Exercise on the Early Stages of Mesenchymal Stromal Cell-Induced Cartilage Repair in a Rat Osteochondral Defect Model, PLoS One 11(3) (2016) e0151580.
    [77] Wayne, J. S., McDowell, C. L., Shields, K. J., Tuan, R. S., In vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering, Tissue Eng 11(5-6) (2005) 953-63.
    [78] Das Neves Borges, P., Forte, A. E., Vincent, T. L., Dini, D., Marenzana, M., Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics, Osteoarthritis Cartilage 22(10) (2014) 1419-28.
    [79] Campbell, G. M., Sophocleous, A., Quantitative analysis of bone and soft tissue by micro-computed tomography: applications to ex vivo and in vivo studies, Bonekey Rep 3 (2014) 564.
    [80] Chiono, V., Pulieri, E., Vozzi, G., Ciardelli, G., Ahluwalia, A., Giusti, P., Genipin-crosslinked chitosan/gelatin blends for biomedical applications, J Mater Sci-Mater M 19(2) (2008) 889-898.
    [81] Lai, J. Y., Li, Y. T., Wang, T. P., In vitro response of retinal pigment epithelial cells exposed to chitosan materials prepared with different cross-linkers, Int J Mol Sci 11(12) (2010) 5256-72.
    [82] Fu, Y. C., Chen, C. H., Wang, C. Z., Wang, Y. H., Chang, J. K., Wang, G. J., et al., Preparation of porous bioceramics using reverse thermo-responsive hydrogels in combination with rhBMP-2 carriers: In vitro and in vivo evaluation, J Mech Behav Biomed 27 (2013) 64-76.
    [83] Sun, S. J., Liu, W. G., Cheng, N., Zhang, B. Q., Cao, Z. Q., Yao, K. D., et al., A thermoresponsive chitosan-NIPAAm/vinyl laurate copolymer vector for gene transfection, Bioconjugate Chem 16(4) (2005) 972-980.
    [84] Xiao, Y. B., Lin, Z. T., Chen, Y. M., Wang, H., Deng, Y. L., Le, D. E., et al., High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging, Int J Nanomed 10 (2015) 1155-1172.
    [85] Wang, X., Zheng, C., Wu, Z., Teng, D., Zhang, X., Wang, Z., et al., Chitosan-NAC nanoparticles as a vehicle for nasal absorption enhancement of insulin, J Biomed Mater Res B Appl Biomater 88(1) (2009) 150-61.
    [86] Loh, Q. L., Choong, C., Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size, Tissue Eng Part B-Re 19(6) (2013) 485-502.
    [87] Jin, R., Moreira Teixeira, L. S., Dijkstra, P. J., van Blitterswijk, C. A., Karperien, M., Feijen, J., Chondrogenesis in injectable enzymatically crosslinked heparin/dextran hydrogels, J Control Release 152(1) (2011) 186-95.
    [88] Wade, R. J., Bassin, E. J., Rodell, C. B., Burdick, J. A., Protease-degradable electrospun fibrous hydrogels, Nat Commun 6 (2015) 6639.
    [89] Liao, J., Qu, Y., Chu, B., Zhang, X., Qian, Z., Biodegradable CSMA/PECA/Graphene Porous Hybrid Scaffold for Cartilage Tissue Engineering, Sci Rep 5 (2015) 9879.
    [90] Alves, N. M., Mano, J. F., Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications, International journal of biological macromolecules 43(5) (2008) 401-14.
    [91] Dean, O., Giorlando, F., Berk, M., N-acetylcysteine in psychiatry: current therapeutic evidence and potential mechanisms of action, J Psychiatr Neurosci 36(2) (2011) 78-86.
    [92] Chen, W. Q., Ercal, N., Huynh, T., Volkov, A., Chusuei, C. C., Characterizing N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA) binding for lead poisoning treatment, J Colloid Interf Sci 371 (2012) 144-149.
    [93] Hisano, N., Morikawa, N., Iwata, H., Ikada, Y., Entrapment of islets into reversible disulfide hydrogels, Journal of Biomedical Materials Research 40(1) (1998) 115-123.
    [94] Choh, S. Y., Cross, D., Wang, C., Facile Synthesis and Characterization of Disulfide-Cross-Linked Hyaluronic Acid Hydrogels for Protein Delivery and Cell Encapsulation, Biomacromolecules 12(4) (2011) 1126-1136.
    [95] Nieto-Suarez, M., Lopez-Quintela, M. A., Lazzari, M., Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly, Carbohyd Polym 141 (2016) 175-183.
    [96] Xing, Q., Yates, K., Vogt, C., Qian, Z. C., Frost, M. C., Zhao, F., Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal, Sci Rep-Uk 4 (2014).
    [97] Boddupalli, B. M., Mohammed, Z. N., Nath, R. A., Banji, D., Mucoadhesive drug delivery system: An overview, J Adv Pharm Technol Res 1(4) (2010) 381-7.
    [98] Yoon, J. A., Kamada, J., Koynov, K., Mohin, J., Nicolay, R., Zhang, Y. Z., et al., Self-Healing Polymer Films Based on Thiol-Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy, Macromolecules 45(1) (2012) 142-149.
    [99] Wang, L. S., Du, C., Toh, W. S., Wan, A. C. A., Gao, S. J., Kurisawa, M., Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties, Biomaterials 35(7) (2014) 2207-2217.
    [100] Schinagl, R. M., Gurskis, D., Chen, A. C., Sah, R. L., Depth-dependent confined compression modulus of full-thickness bovine articular cartilage, J Orthop Res 15(4) (1997) 499-506.
    [101] Haq, M. A., Su, Y., Wang, D., Mechanical properties of PNIPAM based hydrogels: A review, Mater Sci Eng C Mater Biol Appl 70(Pt 1) (2017) 842-855.
    [102] Wang, Q., Mynar, J. L., Yoshida, M., Lee, E., Lee, M., Okuro, K., et al., High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder, Nature 463(7279) (2010) 339-343.
    [103] Brassinne, J., Fustin, C. A., Gohy, J. F., Control over the assembly and rheology of supramolecular networks via multi-responsive double hydrophilic copolymers, Polym Chem-Uk 8(9) (2017) 1527-1539.
    [104] Wu, J. J., Liu, J. Y., Shi, Y. M., Wan, Y., Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels, J Mech Behav Biomed 64 (2016) 161-172.
    [105] Chenite, A., Buschmann, M., Wang, D., Chaput, C., Kandani, N., Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions, Carbohyd Polym 46(1) (2001) 39-47.
    [106] Zubik, K., Singhsa, P., Wang, Y. A., Manuspiya, H., Narain, R., Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing, Polymers-Basel 9(4) (2017).
    [107] Park, H., Choi, B., Hu, J., Lee, M., Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering, Acta Biomater 9(1) (2013) 4779-86.
    [108] Huang, H., Zhang, X., Hu, X., Dai, L., Zhu, J., Man, Z., et al., Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering, Biomed Mater 9(3) (2014) 035008.
    [109] Lai, J. Y., Luo, L. J., Chitosan-g-poly(N-isopropylacrylamide) copolymers as delivery carriers for intracameral pilocarpine administration, European Journal of Pharmaceutics and Biopharmaceutics 113 (2017) 140-148.
    [110] Kastellorizios, M., Papadimitrakopoulos, F., Burgess, D. J., Prevention of foreign body reaction in a pre-clinical large animal model, Journal of Controlled Release 202 (2015) 101-107.
    [111] Uraz, S., Tahan, G., Aytekin, H., Tahan, V., N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats, Scand J Clin Lab Invest 73(1) (2013) 61-6.
    [112] Origuchi, T., Migita, K., Nakashima, T., Honda, S., Yamasaki, S., Hida, A., et al., Regulation of cyclooxygenase-2 expression in human osteoblastic cells by N-acetylcysteine, J Lab Clin Med 136(5) (2000) 390-4.
    [113] Yamada, M., Tsukimura, N., Ikeda, T., Sugita, Y., Att, W., Kojima, N., et al., N-acetyl cysteine as an osteogenesis-enhancing molecule for bone regeneration, Biomaterials 34(26) (2013) 6147-6156.

    無法下載圖示 校內:2023-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE