簡易檢索 / 詳目顯示

研究生: 莊鈞傑
Zhuang, Jun-Jie
論文名稱: 藻池導流器擺放位置與槳葉幾何優化之數值研究
Numerical Optimization of the Installation Location and Blade Geometry of the Flow Inducer in Algae Pond
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 175
中文關鍵詞: 藻池流場導流裝置槳葉幾何數值模擬
外文關鍵詞: algae pond flow field, flow inducer, blade geometry, numerical simulation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在氣候變遷與碳排放壓力日益加劇的背景下,碳捕捉與利用(Carbon Capture and Utilization, CCU)技術的應用與開發已成為永續發展的重要方向。藻類養殖因具備高碳固定效率與再生資源潛力,被視為CCU系統中極具價值的核心模組之一。本研究與華侖生技公司合作,針對其開發之CCU藻池內部導流裝置(flow inducer),進行三維流場模擬與幾何配置優化,目標在於提升藻類養殖效率與碳固定效能。
      本研究建立一座半徑1.8m、高度1.0m之三維藻池模型,採用凍結轉子法(Frozen Rotor Method)進行模擬,並搭配實測流速進行驗證以確保準確性。研究內容分為兩大主軸:其一為探討橢圓槳葉幾何(半軸 a、b與節距p)對流場效率與能耗表現之影響;其二為評估導流裝置於不同擺放配置下的效能,以對應實際操作需求。模擬結果顯示,華侖公司提供原始槳葉設計已接近最佳幾何組合,其中節距p為影響導流效率與功耗的主要敏感參數。配置分析方面,分為高度與水平方向兩個層面。在高度配置分析中,導流器固定於藻池中心,藉由調整其安裝高度觀察流場變化。根據操作目標不同,若需強化底部混合與抑制沉積,建議配置於高度約0.125m;若為促進表層循環與改善光照均勻性,則建議配置於約0.875 m;若以提升全池混合均勻性與動能擴散為目標,則高度0.5至0.625 m為最佳區間。水平配置方面,固定導流器於藻池底部並沿徑向方向調整位置,並依導流器徑向與移動方向相對關係區分為垂直與平行兩種調整方向。模擬結果顯示,導流器位於中心區域時具備最佳近場導流效果、較低的遞減效應與更均勻流場;其中平行調整對位置偏移的敏感度較低,於中心 ± 0.5m範圍內導流表現差異不大,具操作彈性。綜合高度與水平擺放分析結果,導流器安裝位置可依操作需求進行整合應用與調整。本研究成果可作為 CCU 系統中藻池流場設計與導流裝置優化之參考,並有助於後續碳固定模組之系統整合與產業推廣。

    In response to the growing urgency of climate change and carbon emission control, carbon capture and utilization (CCU) technologies have emerged as pivotal approaches for sustainable development of the world. Meanwhile, with its high carbon fixation capacity and renewable potential, algae cultivation plays a vital biological role in CCU systems. Therefore, in this study—conducted in collaboration with ViolonBiotech—we focus on enhancing the performance of a flow inducer in an algae pond. Specifically, using a numerical software of computational fluid dynamics (CFD), here we investigate how the installation location and blade geometry of the flow inducer can be optimized.
    Technically, a full-scale three-dimensional numerical model of a cylindrical algae pond (having a radius of 1.8 m and a depth of 1.0 m) is constructed. Moreover, the “frozen rotor method” is used for flow field simulations, and the numerical results are supported by some flow measurement data (supplied by ViolonBiotech) to validate the adequacy of our computational model. Our numerical study then centers on two primary aspects. First, we examine the effects of the blade geometry—characterized by the elliptical semi-axes a and b, and the helical pitch p of the blade profile—on the flow efficiency and power consumption. And, second, we compare the performance of the flow inducer at various installation locations.
    For blad geometry optimization, our numerical results indicate that the helical pitch p is the most sensitive parameter affecting both the power requirement to run the flow inducer and the flow enhancement. Also, the original blade design provided by ViolonBiotech happens to be near-optimal already. For installation location optimization, when the flow inducer is placed at the center of the pool, the numerical results suggest different optimal placement depths for various pool operational objectives: namely, 0.125 m above the pool bottom to improve bottom mixing and prevent bottom sediment; 0.875 m above the bottom (i.e., 0.125 m below the surface) for enhanced surface circulation and light uniformity; and 0.5-0.625 m above the pool bottom for overall energy dispersion and flow uniformity. Moreover, when the flow inducer is placed on the bottom of the pool at different locations from the center, with its longitudinal parallel or perpendicular to the radius, the flow efficiency also is examined. And the results show that, when the flow inducer is placed at the pool center, the average flow speed in the central region can be maximized (as expected) and the average flow speed attenuation with radius also is slower. Meanwhile, when the flow inducer is placed off-center, the flow speed distribution is less sensitive to the radial distance of the flow inducer from the pool center when its longitudinal axis is parallel to the radius (as opposed to being perpendicular to the radius). It is expected that these findings would offer practical guidance for optimizing the flow field design in CCU algae pond systems, thereby supporting the future development of carbon fixation modules for industrial applications.

    摘要 i Extended Abstract ii 目錄 xxvi 表目錄 xxx 圖目錄 xxxii 符號說明 xxxvi Chapter 1. 緒論 1 1.1. 研究背景 1 1.2. 文獻回顧 7 1.2.1. 流場與藻類生長效率關聯性 8 1.2.2. 螺旋槳幾何參數化 13 1.2.3. 旋轉機械評估指標 16 1.3. 轉子問題模擬技術背景 21 1.4. 研究動機與目標 25 1.5. 全文架構 26 Chapter 2. 藻池設備簡介及數據量測 29 2.1. 微藻性質簡介 29 2.2. 藻池設備簡介 30 2.3. 實驗設備及方法 35 2.3.1. 實驗設備 35 2.3.2. 實驗方法 38 Chapter 3. 計算模型 45 3.1. 模型介紹 45 3.2. 統御方程式及邊界條件 50 3.3. 旋轉區 53 3.4. 凍結轉子法 54 3.5. 動態網格法與凍結轉子法之比較分析 55 3.5.1. 網格獨立性分析 56 3.5.2. 動態網格法與凍結轉子法結果討論 59 3.6. 角動量守恆驗證 61 3.6.1. 軸對稱解析驗證模型之解析解 62 3.6.2. 軸對稱解析驗證模型的數值計算與解析解結果討論 65 3.6.3. 槳葉類比模型數值計算結果討論 69 Chapter 4. 三維模型驗證及指標應用 73 4.1. 網格獨立性分析 73 4.2. 導流器流場模擬結果分析 78 4.3. 指標應用 80 4.4. 數值與實驗定性分析 83 Chapter 5. 槳葉幾何優化 86 5.1. 槳葉幾何參數設定與建構方法 86 5.2. 槳葉幾何優化分析之結果與討論 91 5.3. 小結 103 Chapter 6. 導流器擺放位置優化 104 6.1. 分析流程說明 104 6.2. 高度擺放比較分析 108 6.2.1. 全域流場特性分析 108 6.2.2. 分層區域流場特性分析 111 6.2.3. 應用情境探討 114 6.3. 水平擺放比較分析 117 6.3.1. 槳葉面向與移動方向垂直(垂直調整) 117 6.3.2. 槳葉面向與移動方向平行(平行調整) 122 6.4. 小結 128 Chapter 7. 結論及未來規劃 130 7.1. 結論 130 7.2. 未來規劃 131 參考文獻 132

    [1] P. M. Forster et al., “Indicators of Global Climate Change 2023: annual update of key indicators of the state of the climate system and human influence,” Earth Syst. Sci. Data, vol. 16, no. 6, pp. 2625–2658, June 2024, doi: 10.5194/essd-16-2625-2024.
    [2] National Oceanic and Atmospheric Administration, Global Monitoring Laboratory, “Trends in Atmospheric Carbon Dioxide,” [Online]. Available: https://gml.noaa.gov/ccgg/trends/. Accessed: Jul. 8, 2025.
    [3] Greenhouse Gas Protocol, “Global Warming Potential Values (February 16, 2016),” [Online]. Available: https://ghgprotocol.org/sites/default/files/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf. Accessed: Jul. 8, 2025.
    [4] World Bank, “Global carbon pricing revenues top a record $100 billion,” [Online]. Available: https://www.worldbank.org/en/news/press-release/2024/05/21/global-carbon-pricing-revenues-top-a-record-100-billion. Accessed: Jul. 8, 2025.
    [5] A.-K. Furre, O. Eiken, H. Alnes, J. N. Vevatne, and A. F. Kiær, “20 Years of Monitoring CO2-injection at Sleipner,” Energy Procedia, vol. 114, pp. 3916–3926, July 2017, doi: 10.1016/j.egypro.2017.03.1523.
    [6] J. Burger et al., “Environmental impacts of carbon capture, transport, and storage supply chains: Status and the way forward,” Int. J. Greenh. Gas Control, vol. 132, p. 104039, Feb. 2024, doi: 10.1016/j.ijggc.2023.104039.
    [7] I. Mohsin, T. A. Al-Attas, K. Z. Sumon, J. Bergerson, S. McCoy, and M. G. Kibria, “Economic and Environmental Assessment of Integrated Carbon Capture and Utilization,” Cell Rep. Phys. Sci., vol. 1, no. 7, p. 100104, July 2020, doi: 10.1016/j.xcrp.2020.100104.
    [8] F. M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas, L. F. Vilches Arenas, and B. Navarrete, “Carbon capture and utilization technologies: a literature review and recent advances,” Energy Sources Part Recovery Util. Environ. Eff., vol. 41, no. 12, pp. 1403–1433, June 2019, doi: 10.1080/15567036.2018.1548518.
    [9] J. C. Merchuk, M. Ronen, S. Giris, and S. Arad, “Light/dark cycles in the growth of the red microalga porphyridium sp,” Biotechnol. Bioeng., vol. 59, no. 6, pp. 705–713, Sept. 1998, doi: 10.1002/(sici)1097-0290(19980920)59:6<705::aid-bit7>3.0.co;2-j.
    [10] E. Molina Grima, E.-H. Belarbi, F. G. Acién Fernández, A. Robles Medina, and Y. Chisti, “Recovery of microalgal biomass and metabolites: process options and economics,” Biotechnol. Adv., vol. 20, no. 7, pp. 491–515, Jan. 2003, doi: 10.1016/S0734-9750(02)00050-2.
    [11] J. Pruvost, J.-F. Cornet, and J. Legrand, “Hydrodynamics influence on light conversion in photobioreactors: An energetically consistent analysis,” Chem. Eng. Sci., vol. 63, no. 14, pp. 3679–3694, July 2008, doi: 10.1016/j.ces.2008.04.026.
    [12] E. Sierra, F. G. Acién, J. M. Fernández, J. L. García, C. González, and E. Molina, “Characterization of a flat plate photobioreactor for the production of microalgae,” Chem. Eng. J., vol. 138, no. 1, pp. 136–147, May 2008, doi: 10.1016/j.cej.2007.06.004.
    [13] F. Zeng, J. Huang, C. Meng, F. Zhu, J. Chen, and Y. Li, “Investigation on novel raceway pond with inclined paddle wheels through simulation and microalgae culture experiments,” Bioprocess Biosyst. Eng., vol. 39, no. 1, pp. 169–180, Jan. 2016, doi: 10.1007/s00449-015-1501-9.
    [14] J. Huang et al., “Investigation on the performance of raceway ponds with internal structures by the means of CFD simulations and experiments,” Algal Res., vol. 10, pp. 64–71, July 2015, doi: 10.1016/j.algal.2015.04.012.
    [15] B. Amanna, P. A. Bahri, and N. R. Moheimani, “Application of computational fluid dynamics in optimizing microalgal photobioreactors,” Algal Res., vol. 83, p. 103718, Oct. 2024, doi: 10.1016/j.algal.2024.103718.
    [16] S. S. Bautista-Monroy et al., “Insights of Raceway Bioreactor Scale-Up: Effect of Agitation on Microalgae Culture and Reduction of the Liquid Medium Speed,” Appl. Sci., vol. 12, no. 3, Art. no. 3, Jan. 2022, doi: 10.3390/app12031513.
    [17] A. N. Hayati, S. M. Hashemi, and M. Shams, “A study on the effect of the rake angle on the performance of marine propellers,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 226, no. 4, pp. 940–955, Apr. 2012, doi: 10.1177/0954406211418588.
    [18] D. Anevlavi, S. Zafeiris, G. Papadakis, and K. Belibassakis, “Efficiency Enhancement of Marine Propellers via Reformation of Blade Tip-Rake Distribution,” J. Mar. Sci. Eng., vol. 11, no. 11, Art. no. 11, Nov. 2023, doi: 10.3390/jmse11112179.
    [19] H. Wang, L. Zheng, S. Chen, and B. Ivorra, “Marine Propeller Optimization Based on a Novel Parametric Model,” Math. Probl. Eng., vol. 2022, pp. 1–19, 2022.
    [20] F. Bouregba, M. Belkadi, M. Aounallah, and L. Adjlout, “Effect of the blade number on the marine propeller performance,” EPJ Web Conf., vol. 213, p. 02007, 2019, doi: 10.1051/epjconf/201921302007.
    [21] G. K. Saha, Md. H. I. Maruf, and Md. R. Hasan, “Marine propeller modeling and performance analysis using CFD tools,” presented at the 8TH BSME INTERNATIONAL CONFERENCE ON THERMAL ENGINEERING, Dhaka, Bangladesh, 2019, p. 040012. doi: 10.1063/1.5115883.
    [22] Α. Arapakopoulos, “Parametric design of a marine propeller using T-splines,” July 2019, doi: 10.26240/heal.ntua.16446.
    [23] L. Zheng, S. Chen, X. Chen, and S. Ji, “Reverse Engineering-Inspired Parametric 3D Geometry Model of Marine Propeller,” Pol. Marit. Res., vol. 30, no. 3, pp. 35–47, Oct. 2023, doi: 10.2478/pomr-2023-0037.
    [24] A. R. Khopkar et al., “Flow generated by radial flow impellers: PIV measurements and CFD simulations,” Int. J. Chem. React. Eng., vol. 2, no. 1, pp. 1–19, 2004, doi: 10.2202/1542-6580.1146.
    [25] G. Mittal and R. Issao Kikugawa, “Computational fluid dynamics simulation of a stirred tank reactor,” Mater. Today Proc., vol. 46, pp. 11015–11019, Jan. 2021, doi: 10.1016/j.matpr.2021.02.102.
    [26] V. V. Ranade, “An efficient computational model for simulating flow in stirred vessels: a case of Rushton turbine,” Chem. Eng. Sci., vol. 52, no. 24, pp. 4473–4484, Dec. 1997, doi: 10.1016/S0009-2509(97)00292-3.
    [27] G. R. Kasat, A. R. Khopkar, V. V. Ranade, and A. B. Pandit, “CFD simulation of liquid-phase mixing in solid–liquid stirred reactor,” Chem. Eng. Sci., vol. 63, no. 15, pp. 3877–3885, Aug. 2008, doi: 10.1016/j.ces.2008.04.018.
    [28] H. Ameur, M. Bouzit, and M. Helmaoui, “Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller,” Chem. Process Eng., pp. 351–366, 2011, doi: 10.2478/v10176-011-0028-0.
    [29] H. Ameur, “Energy efficiency of different impellers in stirred tank reactors,” Energy, vol. 93, pp. 1980–1988, Dec. 2015, doi: 10.1016/j.energy.2015.10.084.
    [30] M. Bouaifi and M. Roustan, “Power consumption, mixing time and homogenisation energy in dual-impeller agitated gas–liquid reactors,” Chem. Eng. Process. Process Intensif., vol. 40, no. 2, pp. 87–95, Feb. 2001, doi: 10.1016/S0255-2701(00)00128-8.
    [31] R. Mohammadrezaei, S. Zareei, and N. Behroozi- Khazaei, “Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation,” Energy, vol. 159, pp. 54–60, Sept. 2018, doi: 10.1016/j.energy.2018.06.132.
    [32] P. Bevilaqua and C. Yam, “Propulsive Efficiency of Wake Ingestion,” J. Propuls. Power, vol. 36, no. 4, pp. 517–526, July 2020, doi: 10.2514/1.B37695.
    [33] COMSOL AB, “COMSOL Multiphysics Reference Manual,” Version 5.5, Stockholm, Sweden: COMSOL AB, 2019. [Online]. Available: https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/COMSOL_ReferenceManual.pdf. Accessed: Jul. 8, 2025.
    [34] ANSYS, Inc., “ANSYS Fluent Theory Guide,” Release 2021 R2, Canonsburg, PA, USA: ANSYS, Inc., 2021. [Online]. Available: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/Fluent/Ansys_Fluent_Theory_Guide.pdf. Accessed: Jul. 8, 2025.
    [35] F. Szlivka, C. Hetyei, G. Fekete, and I. Molnár, “Comparison of Mixing Plane, Frozen Rotor, and Sliding Mesh Methods on a Counter-Rotating Dual-Rotor Wind Turbine,” Appl. Sci., vol. 13, no. 15, Art. no. 15, Jan. 2023, doi: 10.3390/app13158982.
    [36] ANSYS, Inc., “Ansys CFX-Pre User's Guide,” Release 2021 R2, Canonsburg, PA, USA: ANSYS, Inc., 2021. [Online]. Available: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Pre_Users_Guide.pdf. Accessed: Jul. 8, 2025.
    [37] COMSOL, “How to model rotating machinery in 3D,” [Online]. Available: https://www.comsol.com/blogs/how-to-model-rotating-machinery-in-3d. Accessed: Jul. 8, 2025.
    [38] COMSOL AB, “Frozen Rotor,” COMSOL Multiphysics Reference Manual, Version 6.1, [Online]. Available: https://doc.comsol.com/6.1/doc/com.comsol.help.cfd/cfd_ug_fluidflow_single.06.113.html. Accessed: Jul. 8, 2025.
    [39] COMSOL AB, “About Rotating Machinery,” COMSOL Multiphysics Reference Manual, Version 6.1, [Online].Available: https://doc.comsol.com/6.1/doc/com.comsol.help.cfd/cfd_ug_fluidflow_single.06.112.html. Accessed: Jul. 8, 2025.
    [40] C. Wang and C. Q. Lan, “Effects of shear stress on microalgae – A review,” Biotechnol. Adv., vol. 36, no. 4, pp. 986–1002, July 2018, doi: 10.1016/j.biotechadv.2018.03.001.
    [41] R. Pistocchi et al., “Good practices for the industrial cultivation of the cyanobacterium Arthrospira platensis under a greenhouse in a temperate zone (northern Italy),” Ital. Bot., vol. 18, pp. 193–214, Dec. 2024, doi: 10.3897/italianbotanist.18.143333.
    [42] N. E.-A. El-Naggar, M. H. Hussein, S. A. Shaaban-Dessuuki, and S. R. Dalal, “Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth,” Sci. Rep., vol. 10, no. 1, p. 3011, Feb. 2020, doi: 10.1038/s41598-020-59945-w.
    [43] D. Surendhiran and M. Vijay, “Exploration on bioflocculation of Nannochloropsis oculata using response surface methodology for biodiesel production,” ScientificWorldJournal, vol. 2014, p. 202659, 2014, doi: 10.1155/2014/202659.
    [44] ScienceDirect,“Rotational Reynolds number-anoverview,” [Online].Available: https://www.sciencedirect.com/topics/engineering/rotational-reynolds-number.Accessed: Jul. 8, 2025.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE