簡易檢索 / 詳目顯示

研究生: 呂柏諺
Lu, Po-Yen
論文名稱: 方根容積卡爾曼濾波器於癲癇光刺激抑制之研究
Research for suppression epilepsy using Cubature Kalman Filter and photic stimulation
指導教授: 朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 138
中文關鍵詞: 顳葉癲癇容積卡爾曼濾波器狀態指標樣本熵海藻酸光刺激
外文關鍵詞: temporal lobe epilepsy, constrained square-root Cubature Kalman filter, sample entropy, kainic acid, photic stimulation
相關次數: 點閱:171下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顳葉癲癇為最常見的神經疾病之一,常見的病徵為動作停止且病患發作完恢復意識的時間較久,而強直性痙攣發作時易誘發癲癇猝死症。因此有必要發展技術以及時給予病患警告及介入。現有神經群模型是基於神經細胞群電生理的非線性模型能描述癲癇間期及發作期的腦波,先前研究將其配合拘束方根容積卡爾曼濾波器(以下簡稱CSC卡爾曼濾波器)發展具有生理意義的辨識指標,但因軟硬體計算速度不足無法即時辨識癲癇且無足夠的實驗數據驗證。本研究目的為改善樣本熵光刺激控制法則及CSC卡爾曼濾波器因個體差異而造成的估測偏差,並發展新的指標以預測及偵測癲癇發作期。應用海藻酸誘導小鼠實驗結果顯示,本研究提出基於機率分佈的閾值能提升辨識成功率及特異性,但不能改善樣本熵指標少數辨識靈敏度低的問題。另外,以CSC卡爾曼濾波器的參數B_k辨識癲癇發作的成功率不高,而本研究提出的抑制性狀態指標平均辨識成功率可達98%,可改善此缺點,且能辨識出指標S_e無法辨識出的發作期波形並提早發出警告。總之,基於神經群模型及CSC卡爾曼濾波器發展的指標能更準確的辨識癲癇發作,若能克服硬體計算速度限制,有可能發展出較樣本熵好的即時辨識癲癇系統,提供辨識及治療顳葉癲癇的新方法。

    Temporal lobe epilepsy is a common neurological disease by which the common symptoms are stopping of movement and amnesia of a single memory or set of memories, and tonic seizure is the leading cause of sudden unexpected death of these patients. It is necessary to develop a warning system for the patient in time, and the model describing average dynamic of neuron papulation called the neural mass model may assist to develop the warning system. The neural mass model, a non-linear model based on the electrophysiology of the neuron populations, can describe the EEG of interictal and ictal. In previous studies a constrained square root Cubature Kalman filter (CSC Kalman filter) was developed based on the neural mass model for predicting the occurrence of epilepsy. However, due to the large amount of calculations only off-line detection of seizure was achieved on a single subject. The goals of this study are real-time suppress seizure by using photic stimulation and to develop new indicators based on the state of the nervous system for detection of seizure. The kainic acid-treated seizure mouse was used to verify the accuracy of the new indicators. Four indicators, namely parameter B of the neural mass model, the sample entropy, the state-based inhibitory index and the excitorary index were computed for their capability to detect seizure. The results show that thresholds determined based on probability distribution can improve the accuracy of seizure detection but the sensitivity. In addition, the average accuracy of identifying seizure using parameter B is lowest among all indicators. The inhibitory state indicator with accuracy up to 98% can detect the depth EEG waveform of ictal that can not be detected by sample entropy and warn patients earlier. The inhibitory index outperforms the other three indicators and it might be applied for real-time detection of seizure if the algorithm could be implemented on hardware with higher computing speed and larger memory. The integration of the CSC Kalman filter and photic stimulation may have contribution to development of new method for treating temporal lobe epilepsy.

    摘 要………………………………………..……………………..…..……..……i 致 謝……………………………………………………………..………………xv 目 錄…………………………………………..…………………..……..………xvi 圖目錄………………………………..…………..……………………..…….....xviii 表目錄…………………………………………………………………..………..xxi 符號表………………………………………………………………...………….xxii 第一章 緒 論……………………………………………………....……….1 1.1 癲癇發作………………………………………………………………..1 1.2 癲癇治療………………………………………………………………..2 1.3 動物癲癇模型和神經群模型回顧……………………………………..5 1.3.1 動物癲癇模型…………………………………………………...5 1.3.2 神經群模型……………………………………………………...7 1.4 研究動機及目的………………………………………………………..8 第二章 研究方法及實驗…………………………………………………..10 2.1 實驗動物………………………………………………………………..10 2.2 癲癇誘導方式及腦波訊號測量條件…………………………………..11 2.2.1 立體定位手術…………………………………………………....11 2.2.2 急性癲癇誘導……………………………………………………14 2.2.3 訊號擷取與處理方法……………………………………………15 2.3 神經群模型……………………………………………………………..16 2.4 癲癇辨識演算法………………………………………………………..20 2.4.1 樣本熵演算法…………………………………………………....20 2.4.2 CSC卡爾曼濾波器演算法……………………………………..21 2.5 CSC卡爾曼濾波器取樣率設計………………………………………25 2.6 開迴路光誘發電位實驗控制方式及離線分析………………………...26 2.6.1 光刺激功率衰減率校正………………………………………….26 2.6.2 光誘發電位強度實驗…………………………………………….28 2.6.3 樣本熵控制法則………………………………………………….28 2.6.4 CSC卡爾曼濾波器估測系統狀態之癲癇辨識指標…………...32 2.7 閉迴路抑制癲癇實驗…………………………………………………...34 2.8 癲癇辨識性能指標……………………………………………………...35 第三章 結果………………………………………………………………...38 3.1 海藻酸模型 …………………………………………………………….38 3.2 演算法離線模擬及開迴路實驗結果…………………………………...38 3.2.1 取樣率對CSC卡爾曼濾波器性能之影響……………………...38 3.2.2 癲癇指標閾值決定結果………………………………………….49 3.2.3 控制組小鼠癲癇指標閾值應用結果…………………………….51 3.2.4 實驗組控制法則…………………………………………………63 3.3 閉迴路光抑制癲癇實驗………………………………………………..65 3.4 性能指標………………………………………………………………..70 3.4.1 癲癇發作時間統計………………………………………………70 3.4.2 發作辨識…………………………………………………………71 第四章 討論………………………………………………………………...78 4-1 海藻酸癲癇誘導模型…………………………………………………..78 4-2 CSC卡爾曼濾波器的取樣頻率及系統估測….……………………..79 4-3 閾值設定………………………………………………………………..80 4-4 控制組小鼠腦波辨識率………………………………………………..80 4-5 閉迴路同側干擾及光抑制癲癇實驗…………………………………..82 4-6 指標演算法比較………………………………………………………..83 第五章 結論與建議………………………………………………………...85 5-1 結論……………………………………………………………………..85 5-2 建議……………………………………………………………………..86 參考文獻………………………………………………………………………….88 附錄A ……………………………………………………………………………93

    [1]C.E. Stafstrom and L. Carmant, “Seizures and Epilepsy: An Overview for Neuroscientists,” Cold Spring Harbor Perspectives In Medicine, vol. 5, no. 6, p. a022426, 2015.
    [2]L. Kuhlmann et al., “Seizure prediction - ready for a new era,” Nature Reviews Neurology, vol. 14, no. 10, pp. 618-630, 2018.
    [3]I. Scheffer, S. Berkovic and G. Capovilla, “ILAE Classification of the Epilepsies Position Paper of the ILAE Commission for Classification and Terminology,” Epilepsia, vol. 58, no. 4, pp. 512-521, 2017.
    [4]W. Tatum, “Mesial temporal lobe epilepsy,” Journal of Clinical Neurophysiology, vol. 29, no. 5, pp. 356-365, 2012.
    [5]E. Cherubini and R. Miles, “The CA3 region of the hippocampus: How is it? What is it for? How does it do it?” Frontiers in Cellular Neuroscience, vol. 9, pp. 9-11, 2015.
    [6]J. Rho and H. White, “Brief history of anti-seizure drug development,” Epilepsia Open, vol. 3, S2, pp. 114-119, 2018.
    [7]D. Spencer, J. Gerrard and H. Zaveri, “The roles of surgery and technology in understanding focal epilepsy and its comorbidities,” The Lancet Neurology, vol. 17, no. 4, pp. 373-382, 2018.
    [8]J. Phi and B. Cho, “Epilepsy surgery in 2019: A time to change,” Journal of Korean Neurosurgical Society, vol. 62, no. 3, pp. 361-365, 2019.
    [9]S. Wiebe, W. Blume and J. Girvin, “A Randomized, Controlled Trial of Surgery for Temporal-Lobe Epilepsy,” New England Journal of Medicine, vol. 345, no. 5, pp. 311-318, 2001.
    [10]S. Spencer, A. Berg and B. Vickrey, “Predicting long-term seizure outcome after resective epilepsy surgery: the multicenter study,” Neurology, vol. 65, no. 6, pp. 912-918, 2005.
    [11]M. Morrell, “Responsive cortical stimulation for the treatment of medically intractable partial epilepsy,” Neurology, vol. 77, no. 13, pp. 1295-1304, 2011.
    [12]A. Schulze-Bonhage, “Brain stimulation as a neuromodulatory epilepsy therapy,” Seizure, vol. 44, no. 2017, pp. 169-175, 2017.
    [13]P. Ryvlin, F. Gilliam and D. Nguyen, “The long-term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: The PuLsE (Open Prospective Randomized Long-term Effectiveness) trial,” Epilepsia, vol. 55, no. 6, pp. 893-900, 2014.
    [14]A. Hartshorn and B. Jobst, “Responsive brain stimulation in epilepsy,” Therapeutic Advances in Chronic Disease, vol. 9, no. 7, pp. 135-142, 2018.
    [15]R. Fisher, V. Salanova and T. Witt, “Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy,” Epilepsia, vol. 51, no. 5, pp. 899-908, 2010.
    [16]P. Rajdev, M. Ward and P. Irazoqui, “Effect of stimulus parameters in the treatment of seizures by electrical stimulation in the kainate animal model,” vol. 21, no. 2, pp.151-162, 2011.
    [17]C. Ciang, C.-C. K and M.-S. Ju, “High frequency stimulation can suppress globally seizure induced by 4-AP in the rat hippocampus,” Brain Stimulation, vol. 6, no. 2, pp. 180-189, 2013.
    [18]B. Siah, C. Chiang and M.-S. Ju, “Suppression of acute seizure by theta burst electrical stimulation of the hippocampal commissure using a closed-loop system,” Brain Research, vol. 1593, pp. 117-125, 2014.
    [19]B. Zemelman, G. Lee and M. Ng, “Selective Photostimulation of Genetically ChARGed Neurons,” NeuronI, vol. 33, no. 1, pp. 15-22, 2002.
    [20]G. Negel, T. Szellas and W. Huhn , “Channelrhodopsin-2, a directly light-gated cation-selective membrane channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, SUPPL. 2, pp. 13940-13945, 2003.
    [21]J. Tonnesen, A. Sorensen and K. Deisseroth, “Optogenetic control of epileptiform activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12162-12167, 2009.
    [22]I. Sukhotinsky, A. Chan, O. Ahmed et al., “Optogenetic Delay of Status Epilepticus Onset in an In Vivo Rodent Epilepsy Model,” PLoS ONE, vol. 8, no. 4, 2013.
    [23]E. Krook-Magnuson, C. Armstrong and M. Oijala, “On-demand optogenetic control of spontaneous seizures in temporal lobe Epilepsy,” Nature Communications, vol. 4, pp. 1-8, 2013.
    [24]C. Chiang, T. Ladas and L. Gonzalez-Reyes, “Seizure Suppression by High Frequency Optogenetic Stimulation Using In Vitro and In Vivo Animal Models of Epilepsy,” Brain Stimulation, vol. 7, no. 6, pp. 890-899, 2014.
    [25]J. Lin, M. Lin and P. Steinbach et al., “Characterization of Engineered Channelrhodopsin Variant with Improved Properties and kinetics,” Biophysical Journal, vol. 96, no. 5, pp. 1803-1814, 2009.
    [26]T. Ladas, C. Chiang and L. Gonzalez-Reyes, “Seizure reduction through interneuron-mediated entrainment using low frequency optical stimulation,” Neurol, vol. 269, pp. 120-132, 2015.
    [27]陳穎俞, “以光基因刺激適應性抑制4-AP誘發之癲癇波,” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2015.
    [28]詹傑凱, “以α頻率突發波抑制光基因轉殖小鼠隻癲癇活動,” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2016.
    [29]林秉弘, “應用樣本熵與光基因刺激發展即時控制系統抑制光基因轉殖鼠之癲癇活動,” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2017.
    [30]王誠鴻, “整合電與光刺激於光基因轉殖小鼠癲癇抑制之研究,” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2018.
    [31]湯登棋, “基於神經群模型之容積卡爾曼濾波器於慢性癲癇發作之應用,” 碩士論文, 機械工程學系, 國立成功大學, 台灣, 2019.
    [32]J. Hellier and F. Dudek, “Chemoconvulsant Model of Chronic Spontaneous Seizures,” Current Protocols in Neuroscience, vol. 31, no. 1, pp. 1-12, 2005.
    [33]L. Kandratavicius, P. Balista and C. Lopes-Aguiar, “Animal models of epilepsy: use and limitations,” Neuropsychiatric Disease and Treatment, vol. 10, pp. 1693-1705, 2014
    [34]Y. Ben-Ari and R. Cossart, “Kainate, a double agent that generates seizures: two decades of progress,” Trends in Neurosciences, vol. 23, no. 11, pp. 580-587, 2000.
    [35]J. Hellier, P. Patrylo and P. Buckmaster, “Recurrent spontaneous motor seizures after repeated low-dose systemic treatment with kainate: assessment of a rat model of temporal lobe epilepsy,” Epilepsy Research, vol. 31, no. 1, pp. 73-84, 1998.
    [36]R.J. Racine, “Modification of seizure activity by electrical stimulation: II. Motor seizure,” Electroencephalography and Clinical Neurophysiology, vol. 32, no. 3, pp. 281-294, 1972.
    [37]K. Tse, S. Puttachary and E. Beamer, “Advantages of repeated low dose against single high hose of kainate in C57BL/6J mouse model of status epilepticus: behavioral and electroencephalographic studies,” PLoS ONE, vol. 9, no. 5, 2014.
    [38]A. Umpierre, I. Bennett and L, Nebeker, “Repeated low-dose kainate administration in C57BL/6J mice produces temporal lobe epilepsy pathology but infrequent spontaneous seizures,” Experimental Neurology, vol. 279, pp. 116-126, 2016.
    [39]G. Curia, D. Longo and G. Biagini, “The pilocarpine model of temporal lobe epilepsy,” Journal of neuroscience methods, vol. 172, no. 2, pp. 143-157, 2008.
    [40]M. Honchar, J. Olney and W. Sherman, “Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats,” Science, vol. 220, no. 4594, pp. 323-325, 1983.
    [41]C. Muller, M. Bankstahl and I. Groticke, “Pilocarpine vs. lithium–pilocarpine for induction of status epilepticus in mice: Development of spontaneous seizures, behavioral alterations and neuronal damage,” European Journal of Pharmacology, vol. 619, no. 1-3, pp. 15-24, 2009.
    [42]D. Clifford, J. Olney and A. Maniotis, “The functional anatomy and pathology of lithium-pilocarpine and high-dose pilocarpine seizures,” Neuroscience, vol. 23, no. 3, pp. 953-968, 1987.
    [43]F. Wendling, P. Benquet and F. Bartolomei, “Computational models of epileptiform activity,” Journal of Neuroscience Methods, vol. 260, pp. 233-251, 2016.
    [44]F. Lopes da Silva, A. van Rotterdam and P. Barts, “Models of neuronal populations: the basic mechanisms of rhythmicity,” Progress in Brain Research, vol. 45, C, pp. 281-308, 1976.
    [45]F. Wendling, J. Bellanger and F. Bartolomei, “Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals,” Biological Cybernetics, vol. 83, no. 4, pp. 367-378, 2000.
    [46]F. Wendling, F. Bartolomei and J. Bellanger, “Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition,” European Journal of Neuroscience, vol. 15, no. 9, pp. 1499-1508, 2002.
    [47]F. Wendling, A. Hernandez and J. Bellanger, “Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG,” Journal of Clinical Neurophysiology, vol. 55, no. 5, pp. 343-356, 2005.
    [48]P. Valdes, J. Jimenez and J. Riera, “Nonlinear EEG analysis based on a neural mass model,” Biological Cybernetics, vol. 81, no. 5-6, pp. 415-424, 1999.
    [49]R. Borisyuk and A. Kirillov, “Bifurcation analysis of a neural network model,” Biological Cybernetics, vol. 66, no. 4, pp. 319-325, 1992.
    [50]L. Ferrat, M. Goodfellow and J. Terry, “Classifying dynamic transitions in high dimensional neural mass models: A random forest approach,” PLoS Computational Biology, vol. 14, no. 3, pp. 1-27, 2018.
    [51]O. Detsch, E. Kochs and M. Siemers, “Differential effects of isoflurane on excitatory and inhibitory synaptic inputs to thalamic neurones in vivo,” British Journal of Anaesthesia, vol. 89, no. 2, pp. 294-300, 2002.
    [52]J. Lin, “A user’s guide to channelrhodopsin variants: features, limitations and future developments,” Experimental Physiology, vol. 96, no. 1, pp. 19-25, 2011.
    [53]K. B. Franklin and G. B. Mulder, “The mouse brain in stereotaxic Coordinates, Compact 3rd Edition,” Academic Press, 2008.
    [54]K. Hartikainen, M. Rorarius and K. Makela, “Propofol and isoflurane induced EEG burst suppression patterns in rabbits,” Acta Anaesthesiologica Scandinavica, vol. 39, no. 6, pp. 814-818, 1995.
    [55]G. McKhann, H. Wenzel and C. Robbins, “Mouse strain differences in kainic acid sensitivity, seizure behavior, mortality, and hippocampal pathology,” Neuroscience, vol. 122, no. 2, pp. 551-561, 2003.
    [56]K. staley, “Molecular mechanisms of epilepsy,” Nature Neuroscience, vol. 18, no. 3, pp. 367-372, 2015.
    [57]M. C. McCord, A. Lorenzana and C. S. Bloom, “Effect of age on kainate-induced seizure severity and cell death,” Neuroscience, vol. 154, no. 3, pp. 1143-1153, 2009.
    [58]C. J. Muller, I. Groticke and K. Hoffmann, “Differences in sensitivity to the convulsant pilocarpine in substrains and sublines of C57BL/6 mice,” Genes, Brain and behavior, vol. 8, pp. 481-492, 2009.

    下載圖示 校內:2022-02-06公開
    校外:2022-02-06公開
    QR CODE