簡易檢索 / 詳目顯示

研究生: 陳亲亲
Chen, Hsin-Hsin
論文名稱: Celecoxib衍生物AR-12在體內與體外皆可抑制登革病毒的複製
The celecoxib derivative AR-12 suppresses dengue virus replication in vitro and in vivo
指導教授: 張志鵬
Chang, Chih-Peng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 64
中文關鍵詞: 登革病毒AKT(蛋白激酶B)AR-12GRP78(78 kDa葡萄糖調節蛋白)
外文關鍵詞: AKT(Protein kinase B), AR-12, Dengue virus, GRP78(78 kDa glucose-regulated protein)
相關次數: 點閱:97下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒的感染已成為全球關注的公共健康問題,也是台灣嚴重流行感染疾病之一。登革病毒感染的症狀表現從輕症的登革熱到潛在致命的登革出血熱和登革休克症候群。然而,目前並沒有有效抗病毒藥物可用於治療登革病毒感染。登革病毒的複製涉及病毒蛋白和細胞因子複雜的交互作用,例如在登革病毒生命週期的各個階段中活化多種細胞激酶是必需的。PI3K / AKT信號途徑在許多細胞過程中有著關鍵的調節作用,而第二型登革病毒可以觸發此路徑來保護受感染的細胞避免細胞走向早期的凋亡性細胞死亡。此外,在登革病毒感染細胞中發現GRP78表現被上調控並且觀察到細胞內病毒抗原和傳染性病毒顆粒大量增加。Celecoxib衍生物,AR-12,是一個PDK-1抑制劑可以抑制PI3K / AKT信號並調控GRP78的表現。最近研究指出AR-12能夠抑制幾種出血熱病毒的複製,但AR-12在治療登革病毒感染的功效,目前尚不得而知。根據我們的實驗數據顯示,在登革病毒感染的不同細胞株中,給予AR-12後可以顯著降低登革病毒複製以及感染性病毒顆粒的釋放。因此,我們進一步探討AR-12是否透過PI3K/ AKT信號途徑與GRP78調控登革病毒的複製。我們的研究結果發現,AR-12降低了AKT的活性和GRP78在登革病毒感染細胞中的表達。此外,我們利用登革病毒感染的小鼠模型,在新出生的小鼠腦部及腹腔同時注射給予登革病毒與AR-12。結果顯示AR-12可以有效減少在感染小鼠中登革病毒的複製。我們進一步利用感染後再給予藥物的實驗來測試AR-12是否能治療登革病毒感染後的小鼠。我們發現,病毒感染後再投與AR-12同樣能有效的抑制登革病毒感染的細胞和小鼠。根據以上實驗結果,我們認為AR-12對於登革病毒的治療具有其潛在功效,在未來可作為一個具潛力的抗病毒藥物。

    Dengue virus (DENV) infection has become a public health issue of worldwide concern and is a serious health problem in Taiwan. DENV symptoms range from dengue fever to potentially fatal dengue hemorrhagic fever and dengue shock syndrome. Yet there are no approved effective antiviral drugs to treat DENV. The replication of DENV involves complex interaction between viral proteins and cellular factors, such as various cellular kinases whose activities are essential for various stages of the DENV life cycle. PI3K/AKT signaling pathway plays a critical regulatory role in modulating many cellular processes triggered by DENV-2 to protect infected cells from early apoptotic cell death. In addition, GRP78 is up-regulated in DENV infected cells co-incident with high level intracellular viral antigen production and infectious virus release. AR-12, a derivative of celecoxib is a PDK-1 inhibitor to abolish PI3K/AKT signaling and suppresses GRP78 levels. It has been recently reported that AR-12 is able to block the replication of several hemorrhagic fever viruses, but the efficacy of AR-12 in treating DENV infection is still unclear. Here, we evaluated DENV replication in different cell lines including A549, Huh-7, U937 and Meg-01 in the presence of AR-12. DENV replication is significantly reduced in AR-12 treated cells, as well as the infectious viral particles. Hence, we further investigated whether AR-12 regulates DENV replication through PI3K/AKT signaling pathway and GRP78. According to our results, AR-12 reduces the expression of pAKT and GRP78 in DENV infected cells. Furthermore, we used a DENV infection mice model, in which the newborn mice were administered with DENV and AR-12 via intracerebral and intraperitoneal injection. As from the results obtained AR-12 showed a potential reduction of DENV replication in mice. And a post-infection treatment experiment was used to determine the therapeutic effect of AR-12 on DENV replication. We found that AR-12 also exhibited effective inhibition in DENV infected cells and mice model. In conclusion, we uncover the potential efficacy of AR-12 as a novel drug for DENV.

    中文摘要 I Abstract II Acknowledgement III Table of contents V Abbreviations VIII I. Introduction 1 1.1 Epidemiology of dengue virus 1 1.2 Virology of dengue virus 2 1.3 Pathogenesis of DENV virus infection 4 1.4 Dengue virus and host factors 6 1.5 Animal models of dengue virus infection 9 1.6 AR-12 is a potential antiviral drug for hemorrhagic fever viruses 10 II. Objective and Specific Aims 12 III. Materials and methods 13 A. Materials 13 A-1. Mice 13 A-2. Cell lines 13 A-3. Viruses 14 A-4. Bacteria and plasmids 14 A-5. Antibody 15 A-6. Reagents 16 B. Methods 22 B-1. Virus culture 22 B-2.1 Plaque assay 23 B-2.2 DENV infection 23 B-3. Western blotting 24 B-5. RT-PCR and Q-PCR 25 B-6. Transfection 26 B-7. Lentiviral-based RNAi gene knockdown 26 B-8. Lactate dehydrogenase (LDH) releasing assay 26 B-9. WST-1 assay 27 B-10. IFA, Immunofluorescence assay 27 B-11. Intracerebral injection mouse model 28 B-12. Statistical analyses 28 IV. Results 29 IV-1. AR-12 regulates DENV replication 29 IV-2. AR-12 regulates DENV replication after virus entry 29 IV-3. AR-12 reduces the expression of pAKT in DENV infected cell 30 IV-4. AR-12 does not regulate DENV replication by enhancing type I IFN response 31 IV-5. AR-12 reduces DENV viral protein by down regulating the expression of GRP78 31 IV-6. AR-12 is able to reduce DENV replication in ICR mice 32 IV-7. Treatment of AR-12 post DENV infection suppress virus replication consistently 33 V. Conclusion 35 VI. Discussion 36 VII. References 41 VIII. Figures 50 Figure 1. AR-12 induces dose-dependent cell growth inhibition in different cell lines. 50 Figure 2. AR-12 can suppress replication of all four serotypes of DENV. 51 Figure 3. AR-12 has no effect on virus binding to cells but inhibits expression of DENV replicon. 52 Figure 4. AR-12 reduces the expression of pAKT in DENV infected cell. 53 Figure 5. AR-12 does not increase production of IFN-α/β/λ and ISG in DENV-infected cells. 54 Figure 6. AR-12 does not regulate the expression of HSP70 and HSP90 during DENV infection. 55 Figure 7. AR-12 inhibits GRP78 in DENV infected cell lines. 56 Figure 8. AR-12 is able to reduce DENV replication in vivo. 58 Figure 9. Post-treatment of AR-12 inhibits DENV replication in Huh-7 cells. 59 Figure 10. Post-treatment of AR-12 inhibits DENV replication in vivo. 60 Figure 11. A proposed model of AR-12 in suppressing DENV replication. 61 IX. Appendix 62 Appendix 1. Genome map of DENV replicon. 62 Appendix 2. Over-expression of GRP78 did not rescue DENV NS1 protein expression in DENV-infected cells in the presence of AR-12. 63 Appendix 3. Several P12 derivatives show similar anti-DENV activity as AR-12 in Huh-7 cells. 64

    Ackermann, M., and Padmanabhan, a.R. (2001). De Novo Synthesis of RNA by the Dengue Virus RNA-dependent RNA Polymerase Exhibits Temperature Dependence at the
    Initiation but Not Elongation Phase. J Biol Chem 276, 39926-39927.

    Ao-Lin Hsu, Tsui-Ting Ching, Da-Sheng Wang, Xueqin Song, Rangnekar, V.M., and Chen, a.C.-S. (2000). The Cyclooxygenase-2 Inhibitor Celecoxib Induces Apoptosis by Blocking Akt Activation in Human Prostate Cancer Cells Independently of Bcl-2. JBC 275, 11397–11403.

    B Falgout, M Pethel, Y M Zhang, and Lai, a.C.J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65, 2467-2475.

    B. V. CAM, L. FONSMARK, N. B. HUE, N.T.P., A. POULSEN, and HEEGAARD, A.E.D. (2001). PROSPECTIVE CASE-CONTROL STUDY OF ENCEPHALOPATHY IN CHILDREN WITH DENGUE HEMORRHAGIC FEVER. Am J Trop Med Hyg 65, 848–851.

    Beesetti, H., Khanna, N., and Swaminathan, S. (2014). Drugs for dengue: a patent review (2010-2014). Expert Opin Ther Pat 24, 1171-1184.

    Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., and Canard, B. (2004). The RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. JVI 328, 208-218.

    Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L., Drake, J.M., Brownstein, J.S., Hoen, A.G., Sankoh, O., et al. (2013). The global distribution and burden of dengue. Nature 496, 504-507.

    Cabrera-Hernandez, A., Thepparit, C., Suksanpaisan, L., and Smith, D.R. (2007). Dengue virus entry into liver (HepG2) cells is independent of hsp90 and hsp70. J Med Virol 79, 386-392.

    Ceballos-Olvera, I., Chavez-Salinas, S., Medina, F., Ludert, J.E., and del Angel, R.M. (2010). JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. JVI 396, 30-36.

    Chan, K.W., Watanabe, S., Kavishna, R., Alonso, S., and Vasudevan, S.G. (2015). Animal models for studying dengue pathogenesis and therapy. Antiviral Res 123, 5-14.

    Chen, H.C., Hofman, F.M., Kung, J.T., Lin, Y.D., and Wu-Hsieh, B.A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol 81, 5518-5526.

    Chiu, H.C., Kulp, S.K., Soni, S., Wang, D., Gunn, J.S., Schlesinger, L.S., and Chen, C.S. (2009). Eradication of intracellular Salmonella enterica serovar Typhimurium with a small-molecule, host cell-directed agent. AAC 53, 5236-5244.

    Chu, J.J., Lee, R.C., Ang, M.J., Wang, W.L., Lim, H.A., Wee, J.L., Joy, J., Hill, J., and Brian Chia, C.S. (2015). Antiviral activities of 15 dengue NS2B-NS3 protease inhibitors using a human cell-based viral quantification assay. Antiviral Res 118, 68-74.

    Chuang, Y.C., Lin, J., Lin, Y.S., Wang, S., and Yeh, T.M. (2016). Dengue Virus Nonstructural Protein 1-Induced Antibodies Cross-React with Human Plasminogen and Enhance Its Activation. J Immunol 196, 1218-1226.

    Dalrymple, N.A., Cimica, V., and Mackow, E.R. (2015). Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant. MBio 6, e00553-00515.

    de Wispelaere, M., LaCroix, A.J., and Yang, P.L. (2013). The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase. J Virol 87, 7367-7381.

    Debora CG Amaral, Milene A Rachid, Marcia C Vilela, Roberta DL Campos, Gustavo P Ferreira, David H Rodrigues, Norinne Lacerda-Queiroz, Aline S Miranda, Vivian V Costa, Marco A Campos, et al. (2011). Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J Neuroinflammation 8, 1.
    Dennis A. Bente, Michael W. Melkus, J. Victor Garcia, and Rico-Hesse, a.R. (2005). Dengue Fever in Humanized NOD:SCID Mice. J Virol 79, 13797–13799.

    Diamond, M.S., and Pierson, T.C. (2015). Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell 162, 488-492.

    Diehl, N., and Schaal, H. (2013). Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 5, 3192-3212.

    Enid J García-Riveraemail, and Rigau-Pérez, J.G. (2002). Encephalitis and dengue. The Lancet 360, 261.

    Ernst, T., McCarthy, S., Chidlow, G., Luang-Suarkia, D., Holmes, E.C., Smith, D.W., and Imrie, A. (2015). Emergence of a new lineage of dengue virus type 2 identified in travelers entering Western Australia from Indonesia, 2010-2012. PLoS Negl Trop Dis 9, e0003442.

    Falconar, A.K. (2007). Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin Vaccine Immunol 14, 493-504.

    Gao, M., Yeh, P.Y., Lu, Y.S., Hsu, C.H., Chen, K.F., Lee, W.C., Feng, W.C., Chen, C.S., Kuo, M.L., and Cheng, A.L. (2008). OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Cancer Res 68, 9348-9357.

    Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martinez, E., et al. (2010). Dengue: a continuing global threat. Nat Rev Microbiol 8, S7-16.

    H. Hotta, I. Murakami, K. Miyasaki, Y. Takeda, H. Shirane, and Hotta, S. (1981). Inoculation of Dengue Virus into Nude Mice. J Gen Virol 52, 71-76.

    Idrees, S., and Ashfaq, a.U.A. (2012). A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan. BMC 10, 1-10.

    Ing-Kit Lee, Liu, J.-W., and Yang, a.K.D. (2009). Clinical Characteristics, Risk Factors, and Outcomes in Adults Experiencing Dengue Hemorrhagic Fever Complicated with Acute Renal Failure. Am J Trop Med Hyg 80, 651-655.

    Jeewandara, C., Gomes, L., Wickramasinghe, N., Gutowska-Owsiak, D., Waithe, D., Paranavitane, S.A., Shyamali, N.L., Ogg, G.S., and Malavige, G.N. (2015). Platelet activating factor contributes to vascular leak in acute dengue infection. PLoS Negl Trop Dis 9, e0003459.

    Ji, W.T., and Liu, H.J. (2008). PI3K-Akt signaling and viral infection. Recent Pat Biotechnol 2, 218-226.

    Jindadamrongwech, S., Thepparit, C., and Smith, D.R. (2004). Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol 149, 915-927.

    Jiuxiang Zhu, Jui-Wen Huang, Ping-Hui Tseng, Ya-Ting Yang, Joseph Fowble, Chung-Wai Shiau, Yeng-Jeng Shaw, Samuel K. Kulp, and Chen, C.-S. (2004). From the Cyclooxygenase-2 Inhibitor Celecoxib to a Novel Class of 3-Phosphoinositide-Dependent Protein Kinase-1 Inhibitors. AACR 64, 4309-4318.

    Kaptein, S.J., and Neyts, a.J. (2016). Towards-antiviral-therapies-for-treating-dengue-virus-infections. Curr Opin Pharmacol 30, 1-7.

    Kim, I., Xu, W., and Reed, J.C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7, 1013-1030.

    Lai, C.Y., Tsai, W.Y., Lin, S.R., Kao, C.L., Hu, H.P., King, C.C., Wu, H.C., Chang, G.J., and Wang, W.K. (2008). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82, 6631-6643.

    Lee, C.J., Liao, C.L., and Lin, Y.L. (2005). Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 79, 8388-8399.

    Lee, Y.R., Su, C.Y., Chow, N.H., Lai, W.W., Lei, H.Y., Chang, C.L., Chang, T.Y., Chen, S.H., Lin, Y.S., Yeh, T.M., et al. (2007). Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res 126, 216-225.

    Lin, C.F., Chiu, S.C., Hsiao, Y.L., Wan, S.W., Lei, H.Y., Shiau, A.L., Liu, H.S., Yeh, T.M., Chen, S.H., Liu, C.C., et al. (2004). Expression of Cytokine, Chemokine, and Adhesion Molecules during Endothelial Cell Activation Induced by Antibodies against Dengue Virus Nonstructural Protein 1. The JI 174, 395-403.

    Lin, Y.L., Lei, H.Y., Lin, Y.S., Yeh, T.M., Chen, S.H., and Liu, H.S. (2002). Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res 56, 93-96.

    Lorenzo Galluzzi, Catherine Brenner, Eugenia Morselli, Zahia Touat, and Kroemer, a.G. (2008). Viral Control of Mitochondrial Apoptosis. PLoS Pathog 4, e1000018.

    Malavige, G.N., Rostron, T., Rohanachandra, L.T., Jayaratne, S.D., Fernando, N., De Silva, A.D., Liyanage, M., and Ogg, G. (2011). HLA class I and class II associations in dengue viral infections in a Sri Lankan population. PLoS One 6, e20581.

    Margaret A. Park, David T. Curiel, Costas Koumenis, Martin Graf, Ching-Shih Chen, Paul B. Fisher, Steven Grant, and Dent, a.P. (2008). PERK-dependent regulation of HSP70 expression and the regulation of autophagy. Autophagy 4, 364-367.

    Martina, B.E., Koraka, P., and Osterhaus, A.D. (2009). Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22, 564-581.

    Medigeshi, G.R., Lancaster, A.M., Hirsch, A.J., Briese, T., Lipkin, W.I., Defilippis, V., Fruh, K., Mason, P.W., Nikolich-Zugich, J., and Nelson, J.A. (2007). West Nile virus infection activates the unfolded protein response, leading to CHOP induction and apoptosis. J Virol 81, 10849-10860.

    Mohr, E.L., McMullan, L.K., Lo, M.K., Spengler, J.R., Bergeron, E., Albarino, C.G., Shrivastava-Ranjan, P., Chiang, C.F., Nichol, S.T., Spiropoulou, C.F., et al. (2015). Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses. Antiviral Res 120, 40-47.

    Morrison, J., and Garcia-Sastre, A. (2014). STAT2 signaling and dengue virus infection. JAKSTAT 3, e27715.

    Mukhopadhyay, S., Kuhn, R.J., and Rossmann, M.G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13-22.

    Munoz-Jordan, J.L., Sanchez-Burgos, G.G., Laurent-Rolle, M., and Garcia-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A 100, 14333-14338.

    Mustafa, M.S., Rasotgi, V., Jain, S., and Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India 71, 67-70.

    Nguyet Minh Nguyen, Chau Nguyen Bich Tran, Lam Khanh Phung, Kien Thi Hue Duong, Huy le Anh Huynh, Jeremy Farrar, Quyen Than Ha Nguyen, Hien Tinh Tran, Chau Van Vinh Nguyen, Laura Merson, et al. (2013). A Randomized, Double-Blind Placebo Controlled Trial of Balapiravir, a Polymerase Inhibitor, in Adult Dengue Patients. J Infect Dis 207, 1442-1450.

    Park, M.A., Yacoub, A., Rahmani, M., Zhang, G., Hart, L., Hagan, M.P., Calderwood, S.K., Sherman, M.Y., Koumenis, C., Spiegel, S., et al. (2008). OSU-03012 stimulates PKR-like endoplasmic reticulum-dependent increases in 70-kDa heat shock protein expression, attenuating its lethal actions in transformed cells. Mol Pharmacol 73, 1168-1184.

    Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., and Zerial, M. (2005). Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78-86.

    Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F., and Del Angel, R.M. (2005). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79, 4557-4567.

    Richard J. Kuhn1, Wei Zhang1, M.G.R., and Sergei V. Pletnev1, J.C., Edith Lenches2, Christopher T. Jones1, Suchetana Mukhopadhyay1, Paul R. Chipman1, Ellen G. Strauss2, Timothy S. Baker1, James H. Strauss2 (2002). Structure of Dengue Virus- Implications for Flavivirus Organization, Maturation, and Fusion. Cell 108, 717-725.

    Rodenhuis-Zybert, I.A., Wilschut, J., and Smit, J.M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67, 2773-2786.

    Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8, 519-529.

    Rothman, A.L. (2011). Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11, 532-543.

    Sabin, A.B., and Schlesinger, R.W. (1945). Production of Immunity to Dengue with Virus Modified by Propagation in Mice. Science 101, 640-642.

    Samuel K. Kulp, Ya-Ting Yang, Chin-Chun Hung, Kuen-Feng Chen, Ju-Ping Lai, Ping-Hui Tseng, Joseph W. Fowble, Patrick J. Ward, and Chen, C.-S. (2004). 3-Phosphoinositide-Dependent Protein Kinase-1:Akt Signaling Represents a Major Cyclooxygenase-2-Independent Target for Celecoxib in Prostate Cancer Cells. AACR 64, 1444-1451.

    Scott B Halstead, S.M., Mary A Marovich, Sukathida Ubol, David M Mosser (2010). Intrinsic antibody-dependent enhancement of microbial infection in macrophages- disease regulation by immune complexes. Lancet Infect Dis 10, 712-722.

    Souza, D.G., Fagundes, C.T., Sousa, L.P., Amaral, F.A., Souza, R.S., Souza, A.L., Kroon, E.G., Sachs, D., Cunha, F.Q., Bukin, E., et al. (2009). Essential role of platelet-activating factor receptor in the pathogenesis of Dengue virus infection. Proc Natl Acad Sci U S A 106, 14138-14143.

    Stern, O., Hung, Y.F., Valdau, O., Yaffe, Y., Harris, E., Hoffmann, S., Willbold, D., and Sklan, E.H. (2013). An N-terminal amphipathic helix in dengue virus nonstructural protein 4A mediates oligomerization and is essential for replication. J Virol 87, 4080-4085.
    Su, C.I., Tseng, C.H., Yu, C.Y., and Lai, M.M. (2016). SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication. J Virol 90, 4308-4319.

    Su, H.L., Liao, C.L., and Lin, Y.L. (2002). Japanese Encephalitis Virus Infection Initiates Endoplasmic Reticulum Stress and an Unfolded Protein Response. J Virol 76, 4162-4171.
    Sujan Shresta, Jennifer L. Kyle, Heidi M. Snider, Manasa Basavapatna, Beatty, P.R., and Harris, a.E. (2004). Interferon-Dependent Immunity Is Essential for Resistance to Primary Dengue Virus Infection in Mice, Whereas T- and B-Cell-Dependent Immunity Are Less Critical. J Virol 78, 2701–2710.

    Tom Solomon, Nguyen Minh Dung, David W Vaughn, Rachel Kneen, Le Thi Thu Thao, Boonyos Raengsakulrach, Ha Thi Loan, Nicholas P J Day, Jeremy Farrar, Khin S A Myint, et al. (2000). Neurological manifestations of dengue infection. THE LANCET 355, 1053-1059.

    Tsai, T.T., Chen, C.L., Lin, Y.S., Chang, C.P., Tsai, C.C., Cheng, Y.L., Huang, C.C., Ho, C.J., Lee, Y.C., Lin, L.T., et al. (2016). Microglia retard dengue virus-induced acute viral encephalitis. Sci Rep 6, 27670.

    Tsai, T.T., Chuang, Y.J., Lin, Y.S., Chang, C.P., Wan, S.W., Lin, S.H., Chen, C.L., and Lin, C.F. (2014). Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 8, e3320.

    Umareddy, I., Chao, A., Sampath, A., Gu, F., and Vasudevan, S.G. (2006). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol 87, 2605-2614.

    Wan, S.W., Lin, C.F., Yeh, T.M., Liu, C.C., Liu, H.S., Wang, S., Ling, P., Anderson, R., Lei, H.Y., and Lin, Y.S. (2013). Autoimmunity in dengue pathogenesis. J Formos Med Assoc 112, 3-11.

    Wati, S., Soo, M.L., Zilm, P., Li, P., Paton, A.W., Burrell, C.J., Beard, M., and Carr, J.M. (2009). Dengue virus infection induces upregulation of GRP78, which acts to chaperone viral antigen production. J Virol 83, 12871-12880.

    Wilder-Smith, A., Ooi, E.E., Vasudevan, S.G., and Gubler, D.J. (2010). Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. Curr Infect Dis Rep 12, 157-164.

    Wu-Hsieh, B.A., Yen, Y.T., and Chen, H.C. (2009). Dengue hemorrhage in a mouse model. Ann N Y Acad Sci 1171 Suppl 1, E42-47.
    Yi-Ching Tung, Kuei-Hsiang Lin, Ko Chang, Liang-Yin Ke, Guan-Ming Ke, Po-Liang Lu, Chun-Yu Lin, Yen-Hsu Chen, and Chiang, a.H.-C. (2008). Phylogenetic Study of Dengue-3 Virus in Taiwan with Sequence Analysis of the Core Gene. KJMS 24, 55-62.

    Yu, C.Y., Chang, T.H., Liang, J.J., Chiang, R.L., Lee, Y.L., Liao, C.L., and Lin, Y.L. (2012). Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog 8, e1002780.

    Zhu, G., and Lee, A.S. (2015). Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J Cell Physiol 230, 1413-1420.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE