| 研究生: |
粘喬琳 Nian, Ciao-Lin |
|---|---|
| 論文名稱: |
定電流陽極沉積錳氧化物之電極製備及其特性研究 Preparation and characteristics of manganese oxides electrode by galvanostatic anodic deposition |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 定電流 、田口式實驗計畫法 、超高電容器 、錳氧化物 |
| 外文關鍵詞: | manganese oxides, electrode, galvanostatic anodic deposition |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超高電容器電極材料之研發,最近深受注目。錳氧化物為可期待的電極材料之ㄧ。影響錳氧化物比電容值的因子甚多,但這些因子對錳氧化物比電容值的貢獻度,以往並未被做定量的描述。本研究目的旨在以定電流陽極沉積法在鈦金屬基板上沉積出錳氧化物薄膜,並將之作為電化學電容器之電極材料。在電化學特性分析方面,主要是以循環伏安法於0.1M Na2SO4溶液中進行擬電容行為測試及比電容值之評估,其中是先以田口方法檢討陽極沉積溫度、電流密度、醋酸錳濃度及pH值對錳氧化物比電容值貢獻度之大小。其結果顯示,當溫度範圍5℃~25℃、pH值範圍5.3~7.3、濃度範圍0.05~0.5 M及電流密度範圍0.25~2.25 mA/cm2時,貢獻度由大而小依序為:沈積溫度、電流密度、陽極沉積溫度與電流密度的交互作用、鍍液濃度,而pH值貢獻度小於1 %。其中值得注意的是陽極沉積溫度與電流密度的交互作用佔了15.04 %。
由於沉積溫度為最主要的影響因子,本研究更進一步檢討沉積溫度對所得錳氧化物之影響。實驗結果顯示當沉積溫度為15℃時所得之錳氧化物有最佳之比電容値225.3 F/g;此錳氧化物電極經300圈循環伏安測試後,仍保有85 %的比電容值,顯示穩定性頗佳。
The electrode materials of supercapacitor are important research targets, recently. Manganese oxide is one of the promising electrode materials. The specific capacitance of manganese oxide are affected by many factors, however, until now there is no any report about the contribution of each factor to the specific capacitance of manganese oxides. This study tries to prepare the manganese oxide film on the titanium metal plate by galvanostatic anodic deposition to get the electrode membrane of capacitors. The Taguchi method was used to analyze the contribution of deposition temperature、current density、Mn(CH3COO)2.4H2O concentration and pH to the specific capacitance of manganese oxides. The cyclic voltammetry was used to test the pseudocapacitor behavior and specific capacitance in 0.1 M Na2SO4 solution. The results showed that the sequence of factors with respect to the contribution to specific capacitance of manganese oxides were the deposition temperature、current density、interaction between deposition temperature and current density, and concentration of Mn(CH3COO)2 solution, when the deposition temperature ranges from 5 ℃ to 25 ℃, pH ranges from 5.3 to 7.3, Mn(CH3COO)2.4H2O concentration ranges from 0.05 M to 0.5 M and current density ranges from 0.25 mA/cm2 to 2.25 mA/cm2. The interaction between deposition temperature and current density was important, and its contribution to specific capacitance of manganese oxides was 15.04 %.
Effect of the deposition temperature(5~80℃) on the specific capacitance of manganese oxides was also discussed because the deposition temperature was the main factor. The experimental results showed that the manganese oxides deposited at 15 ℃ exhibited the highest specific capacitance of 225.3 F/g and the specific capacitance remained 85 % after 300 CV cycles.
1. R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, 45 (2000) 2483.
2. J. P. Zheng and T. R. Jow, "A new charge storage mechanism for electrochemical capacitors," Journal of the Electrochemical Society, 142 (1995) L6.
3. J. P. Zheng, P. J. Cygan and T. R. Jow, "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors," Journal of the Electrochemical Society, 142 (1995) 2699.
4. H. Kim, J. H. Kim, Y. H. Lee and K. B. Kim, "Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications," Journal of The Electrochemical Society, 152 (2005) A2170.
5. C.-C. Hu and T.-W. Tsou, "Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition," Electrochimica Acta, 47 (2002) 3523.
6. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang and T. Ohsaka, "Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution," Journal of the Electrochemical Society, 149 (2002) 504.
7. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution," Journal of Applied Electrochemistry, 34 (2004) 953.
8. J. K. Chang, Y. L. Chen and W. T. Tsai, "Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition," Journal of Power Sources, 135 (2004) 344.
9. C. C. Hu and T. W. Tsou, "Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition," Electrochemistry Communications, 4 (2002) 105.
10. J.-K. Chang and W.-T. Tsai, "Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors," Journal of the Electrochemical Society, 150 (2003) 1333.
11. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical oxidation of Mn/MnO films: Formation of an electrochemical capacitor," Acta Materialia, 53 (2005) 957.
12. C.-C. Hu and T.-W. Tsou, "The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies," Journal of Power Sources, 115 (2003) 179.
13. 羅錦興,品質設計工程指引, 中國生產力中心, (2001).
14. 黃瑞雄, 顏溪成, " 漫談電化學," 科學發展359期 (2002) 22.
15. 張仍奎, 超高電容器錳氧化物電極之電化學製備法、材料特性及擬電容行為, 國立成功大學材料科學及工程學系博士論文, (2005).
16. 鄒達旺, 陽極沉積含水錳氧化物於電化學電容器之研究, 國立中正大學化工研究所碩士論文, (2002).
17. 黃孟娟, 張榮錡, "釕氧化物超高電容器材料特性簡介," 工業材料 182期, (2002) 122.
18. 薛立人, "高性能電容器," 工業材料 166期, (2000) 121.
19. 曾文男, "導電高分子於高儲能電容器上之應用," 工業材料 176期, (2001) 145.
20. S. Trasatti, "Physical electrochemistry of ceramic oxides," Electrochimica Acta, 36 (1991) 225.
21. M. Toupin, T. Brousse and D. Belanger, "Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide," Chemistry of Materials, 14 (2002) 3946.
22. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin, "Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors," Journal of the Electrochemical Society, 152 (2005) 229.
23. H. Y. Lee, H. Y. Lee and S. W. Kim, "Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode," Electrochemical and Solid-State Letters, 4 (2001) 19.
24. R. N. Reddy and R. G. Reddy, "Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material," Journal of Power Sources, 132 (2004) 315.
25. S.-C. Pang, M. A. Anderson and T. W. Chapman, "Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide," Journal of the Electrochemical Society, 147 (2000) 444.
26. J. N. Broughton and M. J. Brett, "Investigation of thin sputtered Mn films for electrochemical capacitors," Electrochimica Acta, 49 (2004) 4439.
27. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical oxidation of Mn/MnO films: Mechanism of porous film growth," Journal of the Electrochemical Society, 153 (2006) 64.
28. C.-C. Hu and C.-C. Wang, "Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition," Journal of the Electrochemical Society, 150 (2003) 1079.
29. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park and S.-I. Mho, "The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2," Electrochimica Acta, 50 (2004) 849.
30. M. Toupin, T. Brousse and D. Belanger, "Charge storge mechanism of MnO2 electrode used in aqueous electrochemical capacitor," Chemistry of Materials, 16 (2004) 3184.
31. 李輝煌,田口方法品質設計的原理與實務, 高立圖書有限公司, (2000).
32. 朱聖凱, 水熱電化學法陽極沉積錳氧化物之電極製備及其特性之研究, 國立成功大學材料科學及工程學系碩士論文, (2004).
33. D. Briggs, M. P. Seah, Practical surface analysis, John WILLEY & SONS. 1 (1993).
34. C. D. Wagner, J. F. Moulder, L. E. Davis, W. M. Riggs, Handbook of X-ray photoelectron spectroscopy, Perking-Elmer Corporation (1995).
35. M. Pourbaix, Atlas of electrochemical equilibrium in aqueous solutions, National Association of Corrosion Engineers, (1966).
36. J. P. Zheng and Y. Xin, "Characterization of RuO2‧xH2O with various water contents," Journal of Power Sources, 110 (2002) 86.
37. M. Chigane, M. Ishikawa and M. Izaki, "Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism," The Electrochemical Society, 148 (2001) D96.
38. M. Chigane and M. Ishikawa, "Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism," Journal of the Electrochemical Society, 147 (2000) 2246.
39. H. Kim and B. N. Popov, "Synthesis and characterization of MnO2 based mixed oxides as supercapacitors," Journal of the Electrochemical Society, 150 (2003) 56.
40. C. Tsang, J. Kim and A. Manthiram, "Synthesis of manganese oxides by reduction of KMnO4 with KBH4 in aqueous solutions," Journal of Solid State Chemistry, 137 (1998) 28.