簡易檢索 / 詳目顯示

研究生: 粘喬琳
Nian, Ciao-Lin
論文名稱: 定電流陽極沉積錳氧化物之電極製備及其特性研究
Preparation and characteristics of manganese oxides electrode by galvanostatic anodic deposition
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 106
中文關鍵詞: 定電流田口式實驗計畫法超高電容器錳氧化物
外文關鍵詞: manganese oxides, electrode, galvanostatic anodic deposition
相關次數: 點閱:83下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 超高電容器電極材料之研發,最近深受注目。錳氧化物為可期待的電極材料之ㄧ。影響錳氧化物比電容值的因子甚多,但這些因子對錳氧化物比電容值的貢獻度,以往並未被做定量的描述。本研究目的旨在以定電流陽極沉積法在鈦金屬基板上沉積出錳氧化物薄膜,並將之作為電化學電容器之電極材料。在電化學特性分析方面,主要是以循環伏安法於0.1M Na2SO4溶液中進行擬電容行為測試及比電容值之評估,其中是先以田口方法檢討陽極沉積溫度、電流密度、醋酸錳濃度及pH值對錳氧化物比電容值貢獻度之大小。其結果顯示,當溫度範圍5℃~25℃、pH值範圍5.3~7.3、濃度範圍0.05~0.5 M及電流密度範圍0.25~2.25 mA/cm2時,貢獻度由大而小依序為:沈積溫度、電流密度、陽極沉積溫度與電流密度的交互作用、鍍液濃度,而pH值貢獻度小於1 %。其中值得注意的是陽極沉積溫度與電流密度的交互作用佔了15.04 %。
    由於沉積溫度為最主要的影響因子,本研究更進一步檢討沉積溫度對所得錳氧化物之影響。實驗結果顯示當沉積溫度為15℃時所得之錳氧化物有最佳之比電容値225.3 F/g;此錳氧化物電極經300圈循環伏安測試後,仍保有85 %的比電容值,顯示穩定性頗佳。

    The electrode materials of supercapacitor are important research targets, recently. Manganese oxide is one of the promising electrode materials. The specific capacitance of manganese oxide are affected by many factors, however, until now there is no any report about the contribution of each factor to the specific capacitance of manganese oxides. This study tries to prepare the manganese oxide film on the titanium metal plate by galvanostatic anodic deposition to get the electrode membrane of capacitors. The Taguchi method was used to analyze the contribution of deposition temperature、current density、Mn(CH3COO)2.4H2O concentration and pH to the specific capacitance of manganese oxides. The cyclic voltammetry was used to test the pseudocapacitor behavior and specific capacitance in 0.1 M Na2SO4 solution. The results showed that the sequence of factors with respect to the contribution to specific capacitance of manganese oxides were the deposition temperature、current density、interaction between deposition temperature and current density, and concentration of Mn(CH3COO)2 solution, when the deposition temperature ranges from 5 ℃ to 25 ℃, pH ranges from 5.3 to 7.3, Mn(CH3COO)2.4H2O concentration ranges from 0.05 M to 0.5 M and current density ranges from 0.25 mA/cm2 to 2.25 mA/cm2. The interaction between deposition temperature and current density was important, and its contribution to specific capacitance of manganese oxides was 15.04 %.
    Effect of the deposition temperature(5~80℃) on the specific capacitance of manganese oxides was also discussed because the deposition temperature was the main factor. The experimental results showed that the manganese oxides deposited at 15 ℃ exhibited the highest specific capacitance of 225.3 F/g and the specific capacitance remained 85 % after 300 CV cycles.

    總目錄 中文摘要………………………………………………………………….…Ⅰ 英文摘要………………………………………………………………….…Ⅱ 目錄……………………………………………………………………….…Ⅳ 表目錄………………………………………………………………….……Ⅶ 圖目錄…………………………………………………………………….…Ⅷ 第一章 緒論…………………………………………………………….....1 第二章 理論基礎與文獻回顧………………………………………….....5 2-1 儲能元件簡介…………………………..……………………………5 2-2 電化學電容器 ……………………………………………………….6 2-2-1 電化學電容器之特性……………………………………………6 2-2-2 電化學電容器之分類……………………………………………7 2-3 電化學電容器之電極材料……………………………………………8 2-3-1 金屬氧化物電極材料……………………………………………9 2-3-2 錳氧化物電極製備方法……………………………………..…10 2-4 錳氧化物的儲能機構………………………….………….…………13 2-5 田口式品質工程…………………………………………………..…14 第三章 實驗方法及步驟…………….……………………..………………28 3-1電極材料製備………………….…………………..…………………28 3-1-1 鈦箔電極片前處理………………………….………………….28 3-1-2 陽極沈積錳氧化物………………………………………..……28 3-1-2-1 第一部份:田口式實驗計畫法…………………….………29 3-1-2-2 第二部份:探討單一變因對比電容值的影響…………….29 3-2藥品與裝置…………………………………………………...………30 3-3錳氧化物薄膜電極製作流程………………...………………………31 3-3-1第一部份:田口式實驗計畫法…………………..………….…31 3-3-2第二部分:探討單一變因對比電容值的影響………….………32 3-4錳氧化物之性質分析………………………..………….……………33 3-4-1 電容特性分析…………………………………………………..33 3-4-2 晶體結構分析…………………………………………………..34 3-4-3 微觀組織分析…………………………………………………..34 3-4-4 表面形貌分析…………………………………………………..35 3-4-5 化學性質分析 ……………………………………………...…35 3-4-6 熱性質分析………………………………………………..……36 第四章 結果與討論…………………………………………...……………39 4-1 田口式品質工程……………………………..……………………..39 4-1-1 實驗規劃……………………………………………………..…39 4-1-2 實驗結果與S/N比…………………………………………..….40 4-1-3 變異數分析……………………………………………..………40 4-1-4 錳氧化物之晶體結構分析……………………….…………….42 4-1-5 錳氧化物之微觀組織分析………………………..……………42 4-1-6 錳氧化物之表面形貌分析……………………………………..43 4-1-7 結語……………………………………………………………..44 4-2沉積溫度對錳氧化物性質之影響……………………..….…………45 4-2-1 陽極沉積條件的選擇…………………………………………..45 4-2-2 錳氧化物之電容特性分析………………………….………….46 4-2-3 錳氧化物之穩定性分析………………………………………..47 4-2-4 錳氧化物晶體結構的低掠角XRD分析…………….………....47 4-2-5 錳氧化物化合狀態的XPS分析………………………….……..48 4-2-6 錳氧化物電極表面微觀組織的SEM分析……………….……..50 4-2-7 錳氧化物微觀組織結構的TEM分析………….….……….....51 4-2-8 錳氧化物之表面形貌分析………………………………..…......55 4-2-9 錳氧化物的熱重與熱差分析…………………………………..56 4-2-10 結語…………………………………………………………...57 第五章 結論………………………………………………………….......100 參考文獻…………………………….……………………………………...102 表目錄 Table 2-1 Auxiliary table………………………………………………............18 Table 4-1 Factors and levels for Taguchi Method…………………………......59 Table 4-2 L27 matrix of Taguchi Method and experimental data of specific capacitance (Cs) and S/N ratio…………………………………................ 60 Table 4-3 Auxiliary table…………………………………….………….......……61 Table 4-4 Analysis of Variance, degree of freedom and contribution of the factors……………………………………….………………….....................62 Table 4-5 Surface characteristics and the specific capacitance of the manganese oxides formed with different deposition conditions…………………………...…………………………..…................63 Table 4-6 O 1s orbital XPS analytical results of the manganese oxides deposited at various temperatures……………...……….…...……...........64 Table 4-7 Surface characteristics and the specific capacitance of the manganese oxides formed with various deposition temperatures………………………………………………….......................65 Table 4-8 Comparative characteristics of the manganese oxides formed at various deposition temperatures…………………………………................66 圖目錄 Fig. 1-1 Sketch of dielectric capacitor………………………………………....4 . Fig. 2-1 The electronic circuit of a electrochemical capacitor in a power source system………………………………………………….……....19 Fig. 2-2 The specific power and the specific energy of various energy storage devices………………………………………………….….................20 Fig. 2-3 Structure of electric double-layer capacitor………………..………21 Fig. 2-4 Cyclic voltammograms at a scan rate of 2mV/s in 1M Na2SO4 for two-electrode cells made of the pristine carbon nanotubes and a-MnO2, respectively…………………………...……….……...…......................22 Fig. 2-5 CV of dip-coated sol-gel MnO2 films was measured in 0.1M Na2SO4 solution with a potential scanning rate of 50mV/s…….…..........23 Fig. 2-6 The potential of the film as a function of oxidation time. Four oxidations have been done, each stopped during a different stage of oxidation……………………….……...………………………....................24 Fig. 2-7 Current vs. potential plots for samples oxidized to various end potentials and then cycled 100 times. A scan rate of 50mV/s was used in a 1M Na2SO4 electrolyte. The tenth cycle is shown……….................25 Fig. 2-8 Cyclic voltammograms of a-MnO2.nH2O measured in 0.1M Na2SO4 at 25mV/s with the upper and lower potential limits of CV equal to (1) (0.8, 0.2);(2) (1.0, 0);and (3) (1.2, -0.2) V…………...........26 Fig. 2-9 Variation of anodic current density of the electrodes formed at various deposition potential in 0.25M Mn(CH3COO)2 solution at 25℃…………………………………………………………...……......................27 Fig.3-1 Schematic diagram of (a) anodic deposition and (b) Potentiostat / Galvanostat analyzer……………………………………………..….............37 Fig. 3-2 Photoelectrons occur principle figure………………………………...38 Fig. 4-1 The contribution of various factors effected on specific capacitance..............................................................67 Fig. 4-2 GAXRD patterns of the oxide electrodes formed with different deposition conditions (a) NO.12 (4.2F/g), (b) NO.16 (160.6F/g), NO.23 (225.3F/g)……….………………………………………..…......................68 Fig. 4-3 XPS spectra of Mn 2p3/2 orbit for the manganese oxides formed with different deposition conditions………………………………............69 Fig. 4-4 SEM micrographs of the manganese oxides formed with different deposition conditions (a) NO.12 (4.2 F/g), (b) NO.16 (160.6 F/g), NO.23 (225.3 F/g)……………………………………….………….................71 Fig. 4-5 Surface topography of the manganese oxides formed with different deposition conditions (a) NO.12 (4.2 F/g), (b) NO.16 (160.6F/g),NO.23(225.3F/g)………...………………….…………....72 Fig. 4-6 Potential-pH equilibrium diagram for the manganese-water system, at 25℃……………………………..……….……………………...........73 Fig. 4-7 Variations of deposition potential with deposition time in 0.1M Mn(CH3COO)2‧4H2O solution at various deposition temperatures…..….74 Fig. 4-8 Cyclic voltammograms of the manganese oxides deposited in 0.1 M manganese acetate aqueous solution at various temperatures. CV curves were measured in 0.1M Na2SO4 solution at 25℃, with a potential scanning rate of 20mV/s………………………………………………....75 Fig. 4-9 The effect of the deposition temperature on the specific capacitance of the manganese oxides……………………….……...............76 Fig. 4-10 Variations of specific capacitance with CV cycle number of the manganese oxide electrodes deposited at various temperatures………………………………………………………...................77 Fig. 4-11 Variations of specific capacitance ratio with CV cycle number of the manganese oxide electrodes deposited at various temperatures……..78 Fig. 4-12 GAXRD patterns of the oxide electrodes deposited at various temperatures…………………………………………………….…..................79 Fig. 4-13 GAXRD patterns of the oxide electrodes deposited at 80℃ after 10 cycles and 300 cycles of CV test……………….……...…................80 Fig. 4-14 XPS spectra of Mn 2p3/2 orbit for the manganese oxides deposited atvarious temperatures…………….………….………...............81 Fig. 4-15 XPS spectra of O 1s orbit for the manganese oxides deposited at various temperatures…………………………………………..................82 Fig. 4-16 SEM micrographs showing surface morphologies of the manganese oxides deposited at various temperatures and then after 10 cycles of CV test: (a)(b) 5℃, (c)(d) 15℃, (e)(f) 40℃ and (g)(h) 80℃………………….83 Fig 4-17 (a) SEM of the manganese oxides deposited at 15℃.(b) and (c) are the map of Mn and O of the manganese oxides deposited at 15℃.....................................................................85 Fig. 4-18 SEM micrographs showing surface morphologies of the manganese oxides deposited at various temperatures and then after 300 cycles of CV test: (a)(b) 15℃, (c)(d) 40℃, and (e)(f)80℃………………………………………………………….............................86 Fig. 4-19 (a) TEM image of the manganese oxides deposited at 5℃, (b) SAED pattern of region B, (c1) and (d1) lattice images taken from regions C and D, respectively. (c2) and (d2) SAED patterns taken from regions C and D, respectively……...………...............................89 Fig. 4-20 (a) TEM image with low magnification and (b) TEM image with high magnification of the manganese oxides deposited at 15℃.(c) and (d1) TEM image with higher magnification of regions C and D, respectively. (d2) and (e) SAED patterns taken from regionsD and E, respectively……….....90 Fig. 4-21 (a) and (b) TEM image with low and high magnification of the manganese oxides deposited at 15℃ , respectively. (c) SAED pattern taken from region C . (d) and (e) lattice images taken from regions D and E, respectively…………………..…………….............92 Fig. 4-22 (a) and (b) are TEM bright field image and dark field image of the manganese oxides deposited at 40℃, respectively.(c) SAED pattern taken from the same area……………………………….…......................94 Fig. 4-23 (a) TEM image of the manganese oxides deposited at 80℃ and (b) SAED pattern taken from region B ……………………...…….............95 Fig. 4-24 (a) TEM image of the manganese oxides deposited at 80℃ and (b) SAED pattern taken from region B . (c) lattice images taken from regions C……………………………………………………........................96 Fig. 4-25 Surface topography of the manganese oxides formed with various deposition temperatures: (a) 5℃, (b) 15℃, (c) 40℃and (d)80℃…………………………………………………….....……........................98 Fig. 4-26 TGA and DTA curves of manganese oxides deposited at various temperatures: (a) 15℃ and (b) 80℃…...………….…......................99

    1. R. Kotz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, 45 (2000) 2483.
    2. J. P. Zheng and T. R. Jow, "A new charge storage mechanism for electrochemical capacitors," Journal of the Electrochemical Society, 142 (1995) L6.
    3. J. P. Zheng, P. J. Cygan and T. R. Jow, "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors," Journal of the Electrochemical Society, 142 (1995) 2699.
    4. H. Kim, J. H. Kim, Y. H. Lee and K. B. Kim, "Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications," Journal of The Electrochemical Society, 152 (2005) A2170.
    5. C.-C. Hu and T.-W. Tsou, "Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition," Electrochimica Acta, 47 (2002) 3523.
    6. L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang and T. Ohsaka, "Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution," Journal of the Electrochemical Society, 149 (2002) 504.
    7. J. K. Chang and W. T. Tsai, "Effects of temperature and concentration on the structure and specific capacitance of manganese oxide deposited in manganese acetate solution," Journal of Applied Electrochemistry, 34 (2004) 953.
    8. J. K. Chang, Y. L. Chen and W. T. Tsai, "Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition," Journal of Power Sources, 135 (2004) 344.
    9. C. C. Hu and T. W. Tsou, "Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition," Electrochemistry Communications, 4 (2002) 105.
    10. J.-K. Chang and W.-T. Tsai, "Material characterization and electrochemical performance of hydrous manganese oxide electrodes for use in electrochemical pseudocapacitors," Journal of the Electrochemical Society, 150 (2003) 1333.
    11. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical oxidation of Mn/MnO films: Formation of an electrochemical capacitor," Acta Materialia, 53 (2005) 957.
    12. C.-C. Hu and T.-W. Tsou, "The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies," Journal of Power Sources, 115 (2003) 179.
    13. 羅錦興,品質設計工程指引, 中國生產力中心, (2001).
    14. 黃瑞雄, 顏溪成, " 漫談電化學," 科學發展359期 (2002) 22.
    15. 張仍奎, 超高電容器錳氧化物電極之電化學製備法、材料特性及擬電容行為, 國立成功大學材料科學及工程學系博士論文, (2005).
    16. 鄒達旺, 陽極沉積含水錳氧化物於電化學電容器之研究, 國立中正大學化工研究所碩士論文, (2002).
    17. 黃孟娟, 張榮錡, "釕氧化物超高電容器材料特性簡介," 工業材料 182期, (2002) 122.
    18. 薛立人, "高性能電容器," 工業材料 166期, (2000) 121.
    19. 曾文男, "導電高分子於高儲能電容器上之應用," 工業材料 176期, (2001) 145.
    20. S. Trasatti, "Physical electrochemistry of ceramic oxides," Electrochimica Acta, 36 (1991) 225.
    21. M. Toupin, T. Brousse and D. Belanger, "Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide," Chemistry of Materials, 14 (2002) 3946.
    22. E. Raymundo-Pinero, V. Khomenko, E. Frackowiak and F. Beguin, "Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors," Journal of the Electrochemical Society, 152 (2005) 229.
    23. H. Y. Lee, H. Y. Lee and S. W. Kim, "Expansion of active site area and improvement of kinetic reversibility in electrochemical pseudocapacitor electrode," Electrochemical and Solid-State Letters, 4 (2001) 19.
    24. R. N. Reddy and R. G. Reddy, "Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material," Journal of Power Sources, 132 (2004) 315.

    25. S.-C. Pang, M. A. Anderson and T. W. Chapman, "Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide," Journal of the Electrochemical Society, 147 (2000) 444.
    26. J. N. Broughton and M. J. Brett, "Investigation of thin sputtered Mn films for electrochemical capacitors," Electrochimica Acta, 49 (2004) 4439.
    27. B. Djurfors, J. N. Broughton, M. J. Brett and D. G. Ivey, "Electrochemical oxidation of Mn/MnO films: Mechanism of porous film growth," Journal of the Electrochemical Society, 153 (2006) 64.
    28. C.-C. Hu and C.-C. Wang, "Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition," Journal of the Electrochemical Society, 150 (2003) 1079.
    29. S. Wen, J.-W. Lee, I.-H. Yeo, J. Park and S.-I. Mho, "The role of cations of the electrolyte for the pseudocapacitive behavior of metal oxide electrodes, MnO2 and RuO2," Electrochimica Acta, 50 (2004) 849.
    30. M. Toupin, T. Brousse and D. Belanger, "Charge storge mechanism of MnO2 electrode used in aqueous electrochemical capacitor," Chemistry of Materials, 16 (2004) 3184.
    31. 李輝煌,田口方法品質設計的原理與實務, 高立圖書有限公司, (2000).
    32. 朱聖凱, 水熱電化學法陽極沉積錳氧化物之電極製備及其特性之研究, 國立成功大學材料科學及工程學系碩士論文, (2004).

    33. D. Briggs, M. P. Seah, Practical surface analysis, John WILLEY & SONS. 1 (1993).
    34. C. D. Wagner, J. F. Moulder, L. E. Davis, W. M. Riggs, Handbook of X-ray photoelectron spectroscopy, Perking-Elmer Corporation (1995).
    35. M. Pourbaix, Atlas of electrochemical equilibrium in aqueous solutions, National Association of Corrosion Engineers, (1966).
    36. J. P. Zheng and Y. Xin, "Characterization of RuO2‧xH2O with various water contents," Journal of Power Sources, 110 (2002) 86.
    37. M. Chigane, M. Ishikawa and M. Izaki, "Preparation of manganese oxide thin films by electrolysis/chemical deposition and electrochromism," The Electrochemical Society, 148 (2001) D96.
    38. M. Chigane and M. Ishikawa, "Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism," Journal of the Electrochemical Society, 147 (2000) 2246.
    39. H. Kim and B. N. Popov, "Synthesis and characterization of MnO2 based mixed oxides as supercapacitors," Journal of the Electrochemical Society, 150 (2003) 56.
    40. C. Tsang, J. Kim and A. Manthiram, "Synthesis of manganese oxides by reduction of KMnO4 with KBH4 in aqueous solutions," Journal of Solid State Chemistry, 137 (1998) 28.

    下載圖示 校內:2008-07-31公開
    校外:2011-07-31公開
    QR CODE