簡易檢索 / 詳目顯示

研究生: 張騰仁
Chang, Teng-jen
論文名稱: 大白鼠水晶體蛋白在不同pH值下其功能與其結構之研究
Functional and Structural Studies of Rat Lens Crystallins under Various pH
指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系碩士在職專班
Department of Chemistry (on the job class)
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 67
中文關鍵詞: 大白鼠水晶體蛋白
外文關鍵詞: Functional and Structural Studies of Rat Lens
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    水晶體蛋白是脊椎動物水晶體中主要的蛋白質,包含A和B兩種單體,水晶體蛋白和小熱休克蛋白質(small heat shock proteins)是屬於同源性蛋白質,且具有分子伴護功能。為了進行結構和功能上的研究,由四週大的大白鼠水晶體中純化出α水晶體蛋白,分別在不同pH值環境中,藉由螢光光譜、圓二色光譜、紫外線光譜的測量來研究α水晶體蛋白的結構和其集結情況與其分子伴護功能。並由檢視水晶體蛋白防止γ水晶體蛋白的熱沉澱時,經實驗結果顯示α水晶體蛋白在不同的酸度環境中,其pH值會影響其伴護效果,且經ANS螢光和類似伴護活性的關連性顯示,結果顯示出表面疏水性之大小對α水晶體蛋白伴護功能無成正比之關係。

    Abstract
    -Crystallin, the major component of lens proteins, includes A and B two subunits in vertebrate eye lenses . -Crystallin is known to have chaperone-like activity and is shown to have homology with small heat-shock proteins in amino acid sequence. In order to study the structure-functionality relationship, -crystallin were isolated from four weeks old Rat lenses. By fluorescence -spectropolarimetry, circular- dichroism spectropolarimetry, UV absorption spectropolarimetry measure under various values of pH environmental, to study the relationship
    between the -crystallin structure and functionality. -Crystallin acts in a chaperone-like manner to prevent the aggregation of γ-crystallin caused by heat-induced denaturation under various pH values. The correlation between the ANS fluorescence and the chaperone-like activity suggests that surface hydrophobicity was not positively related
    to the chaperone activity .

    目錄 中文摘要 ................................................i ABSTRACT ...............................................ii 目錄 .................................................iii 表目錄………………………………………………………………. vi 圖目錄 ...............................................vii 第一章 序論 1 一、水晶體的構造與功能 1 1.水晶體的構造........................................1 2.水晶體的功能………………………………………………..…..3 二、水晶體蛋白質的組成 4 (一) gamma (γ)水晶體蛋白 7 (二) beta (β)水晶體蛋白 10 (三) alpha (α)水晶體蛋白 13 1.小熱休克性蛋白質家族 14 2.α水晶體蛋白的結構 15 3.a水晶體蛋白的功能 20 4.溫度對a水晶體蛋白的影響 21 5.不同環境對水晶體蛋白的影響 22 三、研究動機 24 第二章 實驗 25 一、材料 25 二、儀器設備 27 三、實驗方法 29 (一) 水晶體蛋白的純化 29 (二) 蛋白質濃度的測定…………………………….. …………..29 (三) 一維電泳分析…………………………….. ……………….31 (四) ANS的螢光測定 31 (五) 圓二色光譜的測定 31 (六) 熱變性的測定 32 (七) 熱沉澱防護試驗 33 第三章 實驗結果與討論 34 一、膠體過濾層析 34 二、一維電泳分析 34 三、螢光光譜分析 35 四、圓二色光譜分析 36 五、γ水晶體蛋白在不同pH值溶液中的分析 37 六、水晶體蛋白在不同pH值溶液中的分析 38 七、類似伴護活性(chaperone-like activity)的分析 38 八、結論 39 參考文獻 52

    參考文獻
    1.Frank W. Newell 原著 林和鳴 譯著: 眼科學精華, 環球書社 1998
    2.Bloemendal, H.(1981) “ Molecular and cellular biology of the eye lens ”John Wiley and Sons, New York ,pp 469
    3.Taylor, V. L., Al-Ghoul, K. J., Lane, C. W., Davis, V. A., Kuszak, J. R. and Costello, M. J.: "Morphology of the normal human lens." Invest Ophthalmol Vis Sc 37,pp 1396-1410; 1996
    4.Al-Ghoul, K.J. and Costello, M.J.(1997)“Light microscopic variation of fiber cell size , shape and ordering in the equatorial plane of bovine and human lenses ” Mol. Vis. 3, pp 2
    5.Kalsi, M., Heron, G. and Charman, Wn. (2001)“ Chandes in the static accommodation response with age” Ophthalmic Physiol. Opt. 21,pp 77-84
    6.Delaye, M and Tardieu, A. (1983) “Short-range order of crystallin proteins accounts for eye lens transparency” Nature 302, pp 415-417
    7.Fagerholm, P. P., Philipson, B. T., LindstrÖm, B.: Normal human lens-the distribution of proteins. Exp Eye Res 33, pp 615-620; 1981
    8.Spector, A., Roy, D. and Stauffer, J. (1975) “Isolation and characterization of an age- dependent polypeptide from human lens with non-fluorescence” Exp. Eye Res. 21, pp 9-24
    9.Bettelheim, F.A., Ali A.: Light scattering of normal human lens III. Relationship between forward and back scatter of whole excised lenses. Exp Eye Res 41, pp 1-9; 1985
    10.Brown, N. A. P., Sparrow, J. M. and Bron, A. J. (1988) “Central compaction in the process of lens growth as indicated by lamellar cataract” British J. Ophthalmol. 72, pp 538-544
    11.Van Kamp, G.J. and Hoenders, H.J. (1973) “ The distribution of the soluble proteins in the calf lens” Exp. Eye Res. 17,pp 417-426
    12.Horwitz, J. (1992) “ Alpha-crystallin can function as a molecular chaperone” Proc. Natl. Acad. Sci. USA 89, pp 10449-10453
    13.Sun,T.X., Das,B.K., and Liang,J.N.(1997) “Conformation and functional difference between recombinant human lens aA- and aB-crystallin” J.Biol.chem.272, pp 6220-6225
    14.Harding, J. (1991) Cataract: Biochemistry, Epidemiology and Pharmacology. Chapman & Hall, London, pp 1-70
    15.Giancola, C., Pizzo, E., Maro, A.D., (2005)“Preparation and characterization of geodin a -crystallin-type protein from a sponge” FEBS Journal 272, pp 1023-1025
    16.Wistow, G., Wyatt, K., David, L.,(2005)“N-crystallin and the evolution of the -crystallin superfamily in vertebrates ” FEBS Journal 272, pp 2276-2291
    17.Harding, J. J. and Crabbe, M. J. C.: The lens: development, proteins, metabolism and cataract. In The Eye. (Davson, H., ED.) Academic Press: Orlando, FL. pp 207-492, 1984
    18.Hanson, Stacy R. A., Hasan, Azeem, Smith, David L., Smith, Jean B.(2000) “The Major in vivo Modifications of the Human Water-insoluble Lens Crystallins are Disulfide Bonds, Deamidation, Methionine Oxidation and Backbone Cleavage” Exp. Eye Res. 71, pp 195-207
    19.Yoji, U., Duncan K. M., and David L. L.(2002) “ Lens Proteomics“ The Accumulation of Crystallin Modifications in the Mouse Lens with Age” Invest. Ophthalmol. Vis. Sci. 43, pp 205-215
    20.Goring, DR, Rossant, J, Clapoff, S, Breitman, ML, Tsui, L-C: In situ detection of ß-galactosidase in lenses of transgenic mice with a γ-crystallin/lacZ gene. Science 235, pp 456-458; 1987
    21.Smolich, BD, Tarkington, SK, Saha, MS, Grainger, RM: Xenopus γ-crystallin gene expression: evidence that the γ-crystallin gene family is transcribed in lens and nonlens tissues. Mol Cell Biol 14, pp 1355-1363; 1994
    22.Brunekreef, GA, van Genesen, ST, Destrée, OHJ, Lubsen, NH: Extralenticular expression of Xenopus laevis α-, β-, and γ-crystallin genes. Invest Ophthalmol Vis Sci 38, pp 2764-2771; 1997
    23.Sinha D, Esumi N, Jaworski C, Kozak CA, Pierce E, Wistow G.: Cloning and mapping the mouse Crygs gene and non-lens expression of [gamma]S-crystallin. Mol Vis 4, pp 8-15; 1998
    24.Johnson M.S., Sutcliffe M.J. and Blundell T.L.: Molecular anatomy:phyletic relationships derived from three-dimensional structures of proteins. J Mol Evol 30, pp 43-59; 1990
    25.Richardson, J. S.: β-Sheet topology and the relatedness of proteins. Nature 268, pp 495-500; 1977
    26.Sen A.C., Walsh M.T., Chakrabarti B.: An insight into domain structures and thermal stability of gamma-crystallins. J Biol Chem 267, pp 11898- 11907; 1992
    27.Mandal K., Kono M., Bose S.K., Thomson J., Chakrabarti B.: Structure and stability of gamma-crystallins--IV. Aggregation and structural destabilization in photosensitized reactions. Photochem Photobiol 47, pp 583-591; 1988
    28.Talmadge D.H., Borkman R.F.: The rates of photolysis of the four individual tryptophan residues in UV exposed calf gamma-II crystallin. Photochem Photobiol 51, pp 363-368; 1990
    29.Rudolph R., Siebendritt R., Nesslauer G., Sharma K., Jaenicke R.: Folding of an all-beta protein: independent domain folding in gamma II-crystallin from calf eye lens. Proc Natl Acad Sci, USA 87, pp 4625-4629; 1990
    30.Raman B., Ramakrishna T., Rao C.M.: Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins. J Biol Chem 270, pp 19888- 19892; 1995
    31.Delaye M., Clarke J.I., Benedek G.B.: Identification of the scattering elements responsible for lens opacification in cold cataracts. Biophys J 37, pp 647-656; 1982
    32.Bishwajit Kundu, Anshuman Shukla and Purnananda Guptasarma: Peptide scanning-based identification of regions of γ-II crystallin involved in thermal aggregation: Evidence of the involvement of structurally analogous, helix-containing loops from the two double Greek key domains of the molecule. Arch Biochem Biophys 410, pp 69-75; 2003
    33.Hejtmancik J.F.: The genetics of cataract: our vision becomes clearer. Am J Genet 62, pp 520-525; 1998
    34.Pande A., Pande J., Asherie N., Lomakin A., Ogun O., King J., Benedek G.B.: Crystal cataracts: human genetic cataract caused by protein crystallization. Proc Natl Acad Sci, USA 98, pp 6116-6120; 2001
    35.H’eon, E., Priston, M., Schorderet, D.F., Billingsley, G.D., Girard, P.O., Lubsen, N. and Munier, F.L.: The γ-crystallins and human cataracts: a puzzle made clearer. Am J Hum Genet 65, pp 1261-1267; 1999
    36.Kmoch, S., Brynda, J., Asfaw, B., BezouŠka, K., Nová, P., Rezácová. P, et al.: Link between a novel human γD-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet 9, pp 1779-1786; 2000
    37.Chirgadze Y.N., Driessen H.P.C., Wright G., Slingsby C., Hay R.E., Lindley P.F.: Structure of the bovine eye lens γD (γIIIb)-crystallin at 1.95 Å. Acta Crystallogr D 52, pp 712-721; 1996
    38.Norledge B.V., Hay E., Bateman O.A., Slingsby C., Driessen H.P.C.: Towards a molecular understanding of phase separation in the lens: a comparison of the X-ray structures of two high Tc γ-crystallins, γE and γF, with two low Tc γ-crystallins, γB and γD. Exp Eye Res 65, pp 609-630; 1997
    39.Berbers, G. A., Hoekman WA, Bloemendal H, de Jong WW, Kleinschmidt T, Braunitzer G. Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem 139, pp 467-479; 1984
    40.Den Dunnen, J. T., Moormann, R. J. M., Lubsen, N. H. and
    Schoenmakers,J.G.G.(1986b)Intron insertions and deletions
    in the β/γ-crystallin gene family:the ratβB1 gene.Proc.
    Natl.Acad.Sci.USA 83,2855-2859.
    41.Slingsby C, Bateman OA.: Quaternary interactions in eye lens beta- crystallins: basic and acidic subunits of beta-crystallins favor heterologous association. Biochemistry 29, pp 6592-6599; 1990
    42.Clout, Naomi J.; Basak, Ajit; Wieligmann, Karin; Bateman, Orval A.; Jaenicke, Rainer; Slingsby, Christine: The N-terminal Domain of βB2-crystallin Resembles the Putative Ancestral Homodimer J Mol Biol 3, pp 253-257; 2000
    43.Miesbauer, L. R., Zhou, X., Yang, Z., Yang, Z., Sun, Y., Smith, D. L., and Smith, J. B.: Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem 269, pp 12494-12502; 1994
    44.Ajaz, M. S., Ma, Z., Smith, D. L., and Smith, J. B.: Size of Human Lens β-Crystallin Aggregates Are Distinguished by N-terminal Truncation of βB1. J Biol Chem 272, pp 11250-11255; 1997
    45.Bax, B., Lapatto, R., Nalini, V., Driessen, H., Lindley, P. F., Mahadevan, D., Blundell, T. L., and Slingsby, C.: X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature 347, pp 776-780; 1990
    46.Slingsby C, Clout NJ: Structure of the crystallins. Eye 13, pp 395-402; 1999
    47.Kroone, R. C., Elliott, G. S., Ferszt, A., Slingsby, C., Lubsen, N. H., and Schoenmakers, J. G. G.: The role of the sequence extensions in beta-crystallin assembly. Protein Eng 7, pp 1395-1399; 1994
    48.Ling Fu, Jack J.-N. Liang: Unfolding of human lens recombinant βB2- and γC-crystallins. J Struct Biol 139, pp 191-198; 2002
    49.Zhang, Zhongli; David, Larry L.; Smith, David L.; Smith, Jean B. Resistance of Human βB2-crystallin to in vivo Modification. Exp Eye Res 73, pp 203-211; 2001
    50.Srivastava O.P. and Srivastava K.: βB2-crystallin undergoes extensive truncation during aging in human lenses. Biochem Biophys Res Commun 301, pp 44-49; 2003
    51.Lubsen, N. H., Aarts, H. J. M. and Schoenmakers, J. G. G.: The evolution of lenticular proteins: the β- and γ-crystallin super gene family. Prog Biophys Molec Biol 51, pp 47-76; 1988
    52.Raman, B., and Rao, C. M. (1994) “chaperon-like activtity and quaternary structure of a-crystallins” J. Biol. Chem. 269,pp 27264-27268
    53.Groenen, P.J.T.A., Merck, K.B., de Jong, W.W., and Bloemendal, H. (1994) Eur. J. Biochem. 225, pp 1-19
    54.Bhat, S.P.,and Nagineni C.N. (1989) “Alpha B subunit of lens specific protein alpha-crystallin is present in other occular and non-occular tissues. Biochem. Biophys. Res. Commun. 158, pp 319-325
    55.Sun, T.X.,and Liang, J.J.N. (1998) “Intermolecular exchange and stabilization of recombinant human aA- and aB-crystallin” J. Biol. chem. 273,pp 286-290
    56.A. Spector, M. Zorn, studies Upon the Sulfhydryl Groups of Trypsin CalfLens a-crystallin . J. Biol. Chem. 242 PP
    3594-3600 (1967)
    57.Klemenz, R., Frohli E., Steiger R.H., Schafer R., Aoyama, A. (1991) “Alpha B-crystallin is a small heat-shock protein” Proc. Nat. Acad. Sci. USA 88, pp 3652-3656
    58.Wistow,G.(1985) “Domain structure and evolution in a–crystallins and small heat shock proteins ”FEBS Lett.181, pp 1-6
    59.Jolly, C.,and Morimoto, R.I.(2000) “Role of the heat shock response and molecular chaperone in oncogensis and cell death”J. Natl. Cancer Instr.92, pp 1564-1573
    60.Trent JD, Gabrielsen M, Jensen B, Neuhard J, Olsen J: Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176, pp 6148-6152; 1994
    61.Hightower LE: Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66, pp 191-197; 1991
    62.Siezen, R.J., Bindel, J.G. and Hoendders, H.J.(1980) “The quaternary structure of bovine alpha-crystallin” Eur. J. Biochem.111,pp 435-444
    63.Siezen, R. J., Owen, E. A., Kubota, Y. and Ooi, T. (1983) “Structural homology of lens crystallins. II. Homology expressed by correlation coefficients and hydropathy profiles” Biochim. Biophys. Acta. 748, pp 48-55
    64.Surewicz, W.K., and Olesen, P.R.(1995) Biochemistry 34, pp 9655-9660
    65.Lamba, O. P., Borchman, D., Sinha, S. K., Shah, J., Rcnugopalakrishnan, V. and Yappcrt, M. C. (1993) “Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitation analysis and resolution by Fourier self-deconvolution and curve fit” Biochim. Biophys. Acta. 1163, pp 113-123
    66.Tardieu, A., Laport, D., Licinio, P., Krop ,B. and Delaye, M. (1986) “ Calf lens α-crystallin quaternary structure: a three-layer tetrahedral model” J. Mol. Biol. 192, pp 711-724.
    67.Walsh, M. T., Sen, A. C., and Chakrabarti, B. (1991) “Micellar subunit assembly in a three-layer model of oligomeric a-crystallin” J. Biol. Chem. 266, pp 20079-20084
    68.Wistow, G. J. (1993) “A possible quaternary structure for crystallins and small heat-shock proteins” Exp. Eye Res. 56, pp 729-732
    69.Carver, A., Aquilina, J. A., Truscott, J. W. (1994) “ A possible chaperone-like quaternary structure for a-crystallin” Exp. Eye Res. 59, pp 231-234
    70.Kearney,P.C.,Mizoue,L.S.Kumpf,R.A.,Forman,J.E.,Mccurdy,A.and Dougherty, D. A. Molecular Recognition in Aqueous
    Media New Binding studies-Provide Further Insights into
    the Cation-π Interaction and Related Phenomena. J. Am.
    Chem.Soc.115,9907-9919(1993)
    71. Haley, D. A., Horwitz, J., and Stewart, P. L. (1998) “The small heat-shock protein, aB-crystallin , has a variable quaternary structure” J. Mol. Biol. 277, pp 27–35
    72.Spector, A., and Wang, K. (1995) “a-crystallins can act as a chaperone under condition of oxidative stress ” Invest. Ophthalmol. Vis. Sci. 36, pp 311-321
    73.Wang, K., Spector A.: The chaperone acitivity of bovine alpha crystalline. Interaction with other lens crystallins in native and denatured states. J Biol Chem 269, pp 13601-13608; 1994
    74.Farahbakhsh, Z. T., Huang, Q.-L., Ding, L.-L., Altenbach, C., Steinhoff, H.-J., Horwitz, J., and Hubbell, W. L.: Interaction of alpha- crystallin with spin-labeled peptides. Biochemistry 34, pp 509-516; 1995
    75.Takemoto, L., and Boyle, D.(1994) Curr. Eye Res. 13, pp 35-44
    76.Rao, P.V., Haung, Q.-L., Horwitz, J., and Zigler, J. S.,Jr.(1995) Biochem. Biophys. Acta. 1245 pp 439-447
    77.Siddhartha, A. D., and Rao, Ch. M. (1999) “ Differetial temperature-dependent chaperone-like activity of aA- and aB-crystallins homoaggregates” J. Biol. Chem. 274,pp 34773-34778
    78.Raman, B. and Rao, C. M. (1997) “Chaperone-like activity and temperature-induced structural changes of a-crystallin” J. Biol. Chem. 272, pp 23559-23564
    79.Lee, J. S., Satoh, T., Shinoda, H., Samejima, T., Wu, S. H. and Chiou, S. H.: Effect of heat-induced structural perturbation of secondary and tertiary structures on the chaperone activity of alpha-crystallin. Biochem Biophys Res Commun 237, pp 277-282; 1997
    80.Maiti, M., Kono, M. and Chakrabarti, B. (1988) “Heat-induced changes in the conformation of a- and b-crystallins: unique thermal stability of a-crystallin” FEBS Lett. 236, pp 109-114
    81.Das, K. P. and Surwicz, W. K. (1995) “Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of a-crystallin” FEBS Lett. 369, pp 321-325
    82.Burley,S.K.and Petsko,G.A.Amino-aromatic interactions
    in protein.FEBS Lett.203,139-143(1986)
    83.Das, K. P.; Surewicz, W. K.: Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett 369, pp 321-325; 1995
    84.Burgio MR, Bennett PM, Koretz JF.: Heat-induced quaternary transitions in hetero- and homo-polymers of alpha-crystallin. Mol Vis 7, pp 228-233; 2001
    85.Liang JJ, Fu L.: Decreased subunit exchange of heat-treated lens alpha A-crystallin. Biochem Biophys Res Commun 293, pp 7-12; 2002
    86.Koretz, J. F., Doss, E. W. and LaButti, J. N.: Environmental factors influencing the chaperone-like activity of alpha-crystallin. Int J Biol Macromol 22, pp 283-294; 1998

    下載圖示 校內:立即公開
    校外:2007-07-27公開
    QR CODE