| 研究生: |
黃志盛 Huang, Chih-Sheng |
|---|---|
| 論文名稱: |
以液體加熱之可變溫模具系統開發 Development of a Liquid Based Variothermic Molding System |
| 指導教授: |
黃聖杰
Hwang, Sheng-Jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 模具 、可變溫 、快速加熱 |
| 外文關鍵詞: | mold, variothermic system, rapid heating |
| 相關次數: | 點閱:83 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微射出成型過程保持模具於高溫狀態有助於成型,相對的成型週期也
會增加,本研究即為開發模具可變溫系統減少成型週期時間。
首先構思模具設計部分,想要快速加熱模具必將加熱流道越靠近模穴
越好,流道設計部分還需考慮溫度分布的均勻,故流道的設計隨著模穴
的形狀而變化,根據上述的設計之後須考慮模穴底部的強度,是否因為
射出壓力過大時而產生變形,故採用ANSYS 軟體分析模穴的強度。
再來就是用ANSYS 軟體分析模具於短時間加熱時模具的溫度分布
情形,然後進行實驗確認模具是否於短時間內加熱至預期之溫度,過程
中使用熱電偶量測溫度。
最後進行電腦模擬與實驗的比對,比較後得知電腦模擬所得的模穴表
面溫度高於實驗量測溫度很多,應該是實驗過程中某些元件熱散失與模
溫機所供應的油溫不穩定所造成。
Keeping mold in the status of high temperature will assist micro
injection molding process. However, the cycle time of molding will be
increased as well. One of the solution for this problem is the variotherm
system which heat the mold to a high temperature range rapidly at the
beginning of molding and cool the mold rapidly to increase replicability
ability. This research is aimed to study how much cycle time an oil
based variotherm mold system can reduce.
First, in mold design, the cooling channel should be put as close to
mold cavity as possible if we want to heat mold fast. Uniform
temperature distribution on the mold surface is also an important part
for channel design. Therefore, the design of channel will change with
the shape of the mold surface. The strength of the mold cavity is also
important since excessive amount of injection pressure will be applied
on the mold surface. Consequently, ANSYS software was adopted to
analyze the strength of mold cavity.
Next, in order to make sure whether mold can be heated to the
expected temperature during a short period of time, we used ANSYS
software to predict the temperature distribution on the mold surface
after a short period of time. To verify the result, thermocouples were
used to measure cavity surface temperature.
Finally, compare with simulation and experiment, cavity surface
temperature in simulation was higher than that in experiment. Part of
the reasons was due to some heat dissipation and unstable oil temperature by oil temperature controller in experiment.
1.V. Poitter, T. Hanemann, R. Ruprecht, and J. Hsu βelt, “Injection Molding and Related Techniques for Fabrication of Microstructures,” Microsystem Technologies, pp.129 -133, 1997.
2.陳永坤, “雙面微溝槽之薄件射出成形研究,” 台灣科技大學, 2005.
3.V. Piotter, W. Bauer, T. Benzler and A. Emde, “Injection Molding of Components for Microsystems,” Microsystems Technologies, Vol.7, pp.99-102, 2001.
4.V. Piotter, K. Mueller, K. Plewa, R. Ruprecht, J Hausselt, “Performance and Situation of Thermoplastic Micro Injection Molding, “Microsystems Technologies, Vol.08, pp.387-390, 2002.
5.M. Heckele and W. K. Schomburg, “Review on Micro Molding of Thermoplastic Polymer,” Journal of Micromechanical and Microengineering, Vol.14, R1-R14, 2004.
6.M.S. Despa, K.W. Kelly and L.R. Collier, “Injection Molding of Polymeric LIGA HARMs,” Microsystem Technologies, Vol.6, pp60-66, 1999.
7.S.C. Chen, H.S. Peng, J.A. Chang and W.R. Jong, “Simulation and Verification of Induction Heating on a Mold Plate,” International Communication Heat and Mass Transfer, Vol.31, 7, pp971-980, 2004.
8.S.C. Chen, W.R. Jong, J.A. Chang, “Dynamic Mold Surface Temperature Control Using Induction Heating and Its Effects on the Surface Appearance of Weld Line,” Journal of Applied Polymer Science, Vol.101, pp.1174-1180, 2006.
9.J.A. Chang, S.C. Chen and J.C. Cin, “Rapid Mold Temperature Control on Micro Injection Molded Parts with High Aspect Ratio Micro-Features,” ANTEC, pp.1275-1279, 2006
10.D. Yao, B. Kim, “Development of Rapid Heating and Cooling Systems for Injection Molding Applications,” Polymer Engineering and Science, Vol.42, 12, pp.2471-2481, 2002.
11.S. Kim, R. Trichur, G. Beaucage, C. H. Ahn, and B. H. Kim, “New Plastic Microinjection Molding Technique for Extremely Tall Plastic Microstructures Using Remote Infrared Radiation Heating Method,” Proceedings of the 10th Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, SC, June 2-6, pp.206-209, 2002.
12.anon, http://www.krauss-maffei.de
13.小野產業株式會社, http://www.onosg.co.jp/
14.ANSYS Structural Nonlinearities User’s Guide, Volume I, 1995.
15.ANSYS Structural Nonlinearities User’s Guide, Volume II, 1995.
16.ANSYS Workbook, March 1,1995.
17.V.R. Warrier, P.K. Basu, S.K. Lomash and V. Kumar, “Focal Plane Array (FPA) for Infrared Imaging Application”, Semiconductor Material and Device, pp187-197, 1998.
18.洪宏明, “熱影像系統設計分析之技術研究”, 國立中央大學, 1997.
19.楊益成, “輻射快速加熱模具表面之實驗研究,” 國立成功大學, 2005.
20.張沛頎, “熱塑性塑膠微射出成型技術之研究,” 國立成功大學, 2006.
21.謝友智, “變模溫系統對精密微射出成型微溝紋複製度影響研究,” 雲林科技大學, 2004.
22.陳秋君, “含加熱系統模具模溫之模擬與驗證,” 中原大學, 2001.
23.Incropera, DeWitt, Bergmann and Lavine, “Fundamentals of Heat and Mass Transfer”, 2007.