簡易檢索 / 詳目顯示

研究生: 陳增炫
Chen, Tseng-Hsuan
論文名稱: In添加對改善Sn-1.5Ag-0.7Cu-0.05Ni低銀無鉛銲料性能之研究
Effect of Indium Addition on Property Improvement of Low Silver Lead-free Solder Sn-1.5Ag-0.7Cu-0.05Ni
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 88
中文關鍵詞: 低銀無鉛銲料In元素硬度顯微組織IMC層剪切試驗
外文關鍵詞: Low silver lead-free solder, Microstructure, Indium addition, Intermetallic compound, Mechanical properties
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為探討不同In添加量(1,2,3,5,10wt%)對Sn-1.5Ag-0.7Cu-0.05Ni低銀無鉛銲料對銲點性質的影響。實驗內容包含顯微組織、剪切試驗、硬度分析以及IMC層厚度量測以及熱儲存150℃(100、225hrs)前後觀察顯微組織變化、硬度以及IMC層量測觀察。
    根據實驗結果顯示,In的添加能夠固溶於β-Sn、Ag3Sn、(Cu,Ni)6Sn5形成β-(Sn,In)、Ag3(Sn,In)、(Cu,Ni)6(Sn,In)5,又隨著添加量提升,β-Sn與析出物有逐漸粗大化的現象,共晶組織粗大化的現象也造成析出空間逐漸受到擠壓,形成較多的橢圓狀的Ag3(Sn,In)析出物,形貌也從長條狀逐漸轉變為短條狀甚至是橢圓顆粒狀。
    在熱儲存前可以發現機械性質會隨In元素的添加隨之上升,隨著熱儲存時間的增加,各銲料之微硬度皆呈現下降的趨勢。In添加量在5wt%以下的銲料,其微硬度之變化相似,對抵抗軟化皆有一定的限度,但在添加量10wt%In的銲料卻在熱儲存225小時以後,微硬度出現較大幅下降的趨勢。在剪切試驗中,添加1wt%時,有提高剪切強度並也提升延性,而超過1wt%添加量,剪切強度雖固有提升,但延伸量下降,添加量越多,下降得更明顯並轉為脆性。IMC層厚度觀察,以添加1-3wt%In皆能抑制IMC層成長,超過1wt%,厚度逐漸上升,不管有無熱儲存,添加5wt%In以上時,IMC層厚度皆超過4μm,添加於10wt%時,更是高達6μm以上,實驗結果表明以1wt%的添加為最有效抑制IMC層生成。
    綜合上述各項實驗結果,本研究以1wt%In的添加於SACN銲料是最佳參數,能夠提升機械性質並抑制IMC層厚度。

    The main purpose of this study is to explore the effect of different Indium addition (1,2,3,5,10wt%) on the properties of solder joints of Sn-1.5Ag-0.7Cu-0.05Ni low-silver lead-free solder. The contents of the experiment include observation of microstructure, shear test, hardness analysis, and IMC layer thickness measurement, as well as observation of microstructure changes, hardness, and IMC layer measurement before and after heat storage at 150°C (100, 225hrs).
    According to the experimental results, the addition of In can be dissolved in β-Sn, Ag3Sn, (Cu, Ni)6Sn5 to form β-(Sn,In), Ag3(Sn,In), (Cu,Ni)6(Sn,In)5. With the increase of In addition, β-(Sn,In), Ag3(Sn,In), (Cu,Ni)6(Sn,In)5 gradually become coarser. It causes the precipitation space of the eutectic structure to be gradually compressed and causes discontinuity, forming more elliptical Ag3(Sn, In) precipitates, the morphology has gradually changed from long strips to short strips or even oval granular shapes.
    Before thermal storage, it can be found that the mechanical properties will be improved with the addition of In element. As the thermal storage time increases, the microhardness of each solder tends to decrease. The microhardness of solders with In addition below 5wt% has similar changes in microhardness and has a certain limit to resistance to softening. However, after 225 hours of heat storage for solders with 10wt% In addition, the microhardness decreases significantly trend. In the shear test, the addition of 1wt% increases the shear strength and also increases the ductility. If the addition amount exceeds 1wt%, the shear strength is inherently improved, but the elongation decreases. The more the addition, the more obvious the decrease, and then it turns to brittleness. Observation of the thickness of the IMC layer shows that the growth of the IMC layer can be suppressed by adding 1-3wt% In. The thickness of the IMC layer increases gradually when it exceeds 1wt%. Regardless of whether there is heat storage or not, the thickness of the IMC layer exceeds 4μm when the In is added above 5wt%. When the temperature is as high as 6μm or more, the experimental results show that the addition of 1wt% is the most effective way to suppress the formation of the IMC layer.
    Based on the above experimental results, in this study, the addition of 1wt% In to SACN solder is the best parameter, which can improve the mechanical properties and suppress the thickness of the IMC layer.

    總目錄 摘要....................................................i Extended Abstract...................................... ii 誌謝................................................... vi 總目錄.................................................vii 表目錄.................................................. ix 圖目錄.................................................. x 第一章 前言............................................. 1 1-1前言................................................ 1 1-2研究動機與目的....................................... 5 第二章 文獻回顧......................................... 7 2-1電子封裝技術簡介...................................... 7 2-2無鉛銲料發展概況...................................... 11 2-3二元無鉛銲料......................................... 13 2-3-1 Sn-Ag銲料........................................ 13 2-3-2 Sn-Cu銲料........................................ 16 2-3-3 Sn-In銲料........................................ 17 2-4三元無鉛銲料......................................... 18 2-4-1 Sn-Ag-Cu無鉛銲料.................................. 18 2-4-2 Sn-Ag-Ni無鉛銲料.................................. 21 2-4-3 Sn-Ag-In無鉛銲料.................................. 23 2-5四元無鉛銲料......................................... 24 2-5-1 Sn-Ag-Cu-Ni...................................... 24 2-6添加In元素相關文獻.................................... 27 2-7界面IMC層............................................ 30 第三章 實驗步驟與方法.................................... 32 3-1實驗規劃............................................. 32 3-2試件制備............................................. 34 3-3實驗內容............................................. 38 第四章 研究結果與討論.................................... 43 4-1 In元素添加對於銲料素材微結構影響...................... 43 4-1-1高溫熱儲存前金相結構................................ 43 4-1-2 150℃熱儲存後金相微結構............................ 52 4-2 In元素添加對於SACN合金銲料硬度影響.................... 60 4-3 In元素添加對於SACN合金銲料銲點IMC層影響............... 65 4-4 剪切試驗............................................ 72 4-5 綜合討論............................................ 79 第五章 結論............................................. 81 第六章 建議與未來方向.................................... 83 第七章 參考文獻......................................... 84

    [1] P. T. Vianco, and D. R. Frear, "Issues in the replacement of lead-bearing solders", JOM, Vol.45, pp.14-19, 1993.
    [2] "InvestmentMine:https://www.infomine.com/investment/",
    [3] K. S. Kima, S. H. Huha, and K. Suganumab, "Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints", Journal of Alloys and Compounds, Vol.352(1-2), pp.226-236, 2003.
    [4] H. Ma, and J. C. Suhling, "A review of mechanical properties of lead-free solders for electronic packaging", Journal of Materials Science, Vol.44(5), pp.1141-1158, 2009.
    [5] K. S. Kim, S.H. Huh, and K. Suganuma, "Effects of cooling speed on microstructure and tensile properties of Sn–Ag–Cu alloys", Materials Science and Engineering A333, Vol.333(1-2), pp.106-144, 2002.
    [6] "BullionByPost.Available:https://www.bullionbypost.co.uk/silver-price/",
    [7] F. Cheng, F. Gao, J. Zhang, W. Jin, and X. Xiao, "Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys", Journal of Materials Science, Vol.46(10), pp.3424-3429, 2011.
    [8] 李昭慶, "Sn-xAg-0.7Cu無鉛銲料微結構與低週疲勞研究", 成功大學機械工程學系碩士論文, pp.1-102, 2013.
    [9] D. A. Shnawah, M. F. M. Sabri, and I. A. Badruddin, "A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products", Microelectronics Reliability, Vol.52(1), pp.90-99, 2012.
    [10] F. X. Che, and H. L. Pang, "Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn–3.8Ag–0.7Cu solder joints", Journal of Alloys and Compounds, Vol.541, pp.6-13, 2012.
    [11] S. Terashima, Y. Kariya, T. Hosoi, and M. Tanaka, "Effect of silver content on thermal fatigue life of Sn-xAg-0.5Cu flip-chip interconnects", Journal of Electronic Materials Vol.32, pp.1527-1533, 2003.
    [12] Y. Kariya, T. Hosoi, T. Kimura, S. Terashima, M. Tanaka, and T. Suga, "Fatigue life enhancement of low silver content Sn-Ag-Cu flip-chip interconnects by Ni addition", The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems pp.103-108, 2004.
    [13] D. Suha, D. W. Kimb, P. Liu, H. Kima, J. A. Weninger, C. M. Kumara, A.P, B.W.Grimsley, H.B.Tejada., "Effects of Ag content on fracture resistance of Sn–Ag–Cu lead-free solders under high-strain rate conditions", Materials Science and Engineering: A, Vol.460-461, pp.595-603, 2007.
    [14] Y. M. Kim, H. R. Roh, S. Kim, Y. H. Kim, "Kinetics of Intermetallic Compound Formation at the Interface Between Sn-3.0Ag-0.5Cu Solder and Cu-Zn Alloy Substrates", Journal of Electronic Materials, Vol.39(12), pp.2504-2512, 2010.
    [15] C. Anderssona, Z. Laia, J. Liub, H. Jiangc, and Y. Yuc, "Comparison of isothermal mechanical fatigue properties of lead-free solder joints and bulk solders", Materials Science and Engineering: A, Vol.394(1-2), pp.20-27, 2005.
    [16] N. Mookama, and K. Kanlayasiri, "Effect of soldering condition on formation of intermetallic phases developed between Sn–0.3Ag–0.7Cu low-silver lead-free solder and Cu substrate", Journal of Alloys and Compounds, Vol.509(21), pp.6276-6279, 2011.
    [17] Y. Kariya, and M. Otsuka, "Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloy", Journal of Electronic Materials Vol.27, pp.1229–1235, 1998.
    [18] J. H. Lee, A. M. Yu, J. H. Kim, M. S. Kim, and N. Kang, "Reaction Properties and Interfacial Intermetallics for Sn-xAg-0.5Cu Solders as a Function of Ag Content", Metals and Materials International, Vol.14(5), pp.649-654, 2008.
    [19] 洪瑞隆, "Ni添加對Sn-1.5Ag-0.7Cu無鉛銲料低週疲勞破壞及時效影響之研究", 成功大學機械工程學系碩士論文, pp.1-104, 2017.
    [20] 謝喻丞, "Ni添加對Sn-1.5Ag-0.7Cu低銀無鉛銲料顯微組織與機械性質影響之研究", 成功大學機械工程學系碩士論文, pp.1-85, 2016.
    [21] 謝喻丞, "Ni添加對Sn-1.5Ag-0.7Cu低銀無鉛銲料顯微組織與機械性質影響之研究", 成功大學機械工程學系碩士論文, 2016.
    [22] S. Terashima, M. Tanaka, "Thermal Fatigue Properties of Sn-1.2Ag-0.5Cu-xNi Flip Chip Interconnects", Materials Transactions, Vol.45, pp.681-688, 2004.
    [23] 蘇怡靜, "In添加對Sn-1.5Ag-0.7Cu-0.05Ni低銀無鉛銲料顯微結構與機械性質影響之研究", 成功大學機械工程學系碩士論文, pp.1-94, 2018.
    [24] R. Tummala, "Fundamentals of microsystems packaging", 2001.
    [25] Z. Li, "A Novel Rate-Objective Model For The Large-Scale Simulation of Temperature Dependent Inelasticity Phenomena", Rensselaer Polytechnic Institute, 2017.
    [26] L. Wang, S. C. Kang, H. Li, D. F. Baldwin, and C.P. Wong, "Reworkable Underfills for Flip Chip, BGA, and CSP Applications", IEEE, Vol.2000 Proceedings. 50th Electronic Components and Technology Conference (Cat. No.00CH37070), pp.914-919, 2000.
    [27] E. Bradley, C. A. Handwerker, J. Bath, R. D. Parker, and R. W. Gedney, "Lead-Free Electronics: iNEMI Projects Lead to Successful Manufacturing", John Wiley & Sons, pp.1-107, 2007.
    [28] H. Bakerandh, and H. Okamoto, "ASM Handbook.Vol.3. Alloy Phase Diagrams", Vol.ASM International,Material Park, 1992.
    [29] J. K. Lin, A. D. Silva, D. Frear, et al, "Characterization of lead-free solders and under bump metallurgies for flip-chip package", IEEE Transactions on Electronics Packaging Manufacturing, Vol.25(4), pp.300-307, 2002.
    [30] W. Yang, L. E. Felton, R. W. Messler, and JR, "The Effect of Soldering Process Variable on the Microstructure and Mechanical Properties of Eutectic Sn-Ag Cu Solder Joints", Journal of Electronic Materials, Vol.24(10), pp.1465-1472, 1995.
    [31] K. Suganuma, "Interface Phenomena in Lead-free Soldering", IEEE, pp.620-625, 1999.
    [32] E. Fine, Rodney J. Maccabe and Morris, "Creep of tin, Sb-solution-strengthened tin, and SbSn-precipitate-strengthened tin", Metallurgical and Materials Transaction A, Vol.33, pp.1531-1539, 2002.
    [33] Y. Kariya, and M. Otsuka, "Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys", Journal of Electronic Materials, Vol.27(11), pp.1229-1235, 1998.
    [34] M. S. Yeh, "Effects of Indium on the Mechanical Properties of Ternary Sn-In-Ag Solders", Metallurgical and Materials Transactions A pp.pages361–365, 2003.
    [35] 許媛婷, "Sn-Ag-Sb-xIn 無鉛銲料接點微結構與低週疲勞之研究", 成功大學機械工程學系學位論文, pp.1-107, 2005.
    [36] J. M. Song, and K. L. Lina, "Double peritectic behavior of Ag–Zn intermetallics in Sn–Zn–Ag solder alloys", Journal of Materials Research, Vol.19(9), pp.2719-2724, 2011.
    [37] W. R. Osórioa, J. E. Spinelli, C. R. M. Afonsob, L. C. Peixotoc, and A. Garciac, "Microstructure, corrosion behaviour and microhardness of a directionally solidified Sn–Cu solder alloy", Electrochimica Acta, Vol.56(24), pp.8891-8899, 2011.
    [38] S. H. Liu, C. Chena, P. C. Liu, and T. Chou, "Tin whisker growth driven by electrical currents", Journal of Applied Physics, Vol.95(12), pp.7742-7747, 2004.
    [39] S. K. Kang, and A.K. Sarkhel, "Lead (Pb)-free solders for electronic packaging", Journal of Electronic Materials, , Vol.23, pp.701-707, 1994.
    [40] J. L. Freer, J. W. Morris, and JR, "Microstructure and creep of eutectic indium tin on copper and nickel substrates", Journal of Electronic Materials, Vol.21, pp.647-652, 1992.
    [41] J. Liang, N. Dariavach, and D. Shangguan, "Solidification Condition Effects on Microstructures and Creep Resistance of Sn-3.8Ag-0.7Cu Lead-Free Solder", Metallurgical and Materials Transactions A, Vol.38(7), pp.1530-1538, 2007.
    [42] S. Terashima, Y. Kariya, T Hosoi, and M. Tanaka, "Effect of Silver Content on Thermal Fatigue Life of Sn-xAg-0.5Cu Flip-Chip Interconnects", Journal of Electronic Materials, Vol.32, pp.1527-1533, 2003.
    [43] J. H. L. Pang, L. Xu, X. Q. Shi, W. Zhou, and S. L. Ngoh, "Intermetallic growth studies on Sn-Ag-Cu lead-free solder joints", Journal of Electronic Materials, Vol.33, pp.1219–1226, 2004.
    [44] C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. KAO, "Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni", Journal of Electronic Materials, Vol.31, pp.584-590, 2002.
    [45] J. Chen, J. Shen, S. Lai, D. Min, and X. Wang, "Microstructural evolution of intermetallic compounds in Sn–3.5Ag–X (X=0, 0.75Ni, 1.0Zn and 1.5In)/Cu solder joints during liquid aging", Journal of Alloys and Compounds, Vol.489(2), pp.631-637, 2010.
    [46] 李洋憲, "Sn-Ag-xNi複合銲料與銅基板間銲點的機械性能及微結構之研究", 成功大學機械工程學系博士論文, pp.1-157, 2006.
    [47] J. W. Yoon, B. I. Noh, B. K. Kim, C. C. Shur, and S. B. Jung, "Wettability and interfacial reactions of Sn–Ag–Cu/Cu and Sn–Ag–Ni/Cu solder joints", Journal of Alloys and Compounds, Vol.486(1-2), pp.142-147, 2009.
    [48] Y. Kariya, and M. Otsuka, "Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys", Journal of Electronic Materials, Vol.27, pp.1229–1235, 1998.
    [49] M. S. Yeh, "Effects of indium on the mechanical properties of ternary Sn-In-Ag solders", Metallurgical and Materials Transactions A, Vol.34, pp.361–365, 2003.
    [50] T. H. Chuang, K. W. Huang, and W. H. Lin, "Mechanisms for the intermetallic formation during the Sn-20In-2.8Ag Ni soldering reactions", Journal of Electronic Materials, Vol.33, pp.374-381, 2004.
    [51] A. A. El-Daly, A. E. Hammada, A. Fawzy, and D. A. Nasrallh, "Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions", Materials & Design, Vol.43, pp.40-49, 2013.
    [52] A. A. El-Daly, A. M. El-Taher, and T.R. Dalloul, "Enhanced ductility and mechanical strength of Ni-doped Sn–3.0Ag–0.5Cu lead-free solders", Materials & Design, Vol.55, pp.309-318, 2014.
    [53] F. Gao, T. Takemoto, and H. Nishikawa, "Effects of Co and Ni addition on reactive diffusion between Sn–3.5Ag solder and Cu during soldering and annealing", Materials Science and Engineering: A, Vol.420(1-2), pp.39-46, 2006.
    [54] L. Wang, F. Sun, Y. Liu, and L. Wang, "Effect of Ni Addition on the Sn-0.3Ag-0.7Cu Solder Joints", 2009 International Conference on Electronic Packaging Technology & High Density Packaging, Vol.504, pp.830-833, 2009.
    [55] 蔡宏佳, "添加In對Sn-3Ag-2Sb銲點微結構與低週疲勞特性之研究", 成功大學機械工程學系碩士論文, pp.1-101, 2006.
    [56] 李祖耀, "添加In對Sn-Ag-Sb無鉛銲料銲點之效應研究", 成功大學機械工程學系碩士論文, pp.1-118, 2006.
    [57] C. Lejuste, F. Hodaj, and L. Petit, "Solid state interaction between a Sn–Ag–Cu–In solder alloy and Cu substrate", Intermetallics, Vol.36, pp.102-108, 2013.
    [58] M. Yang, M. Li, and C.Wang, "Interfacial reactions of eutectic Sn3.5Ag and pure tin solders with Cu substrates during liquid-state soldering", Intermetallics, Vol.25, pp.86-94, 2012.
    [59] X. Deng, G. Piotrowski, J. Williams, and N. Chawla, "Influence of Initial Morphology and Thickness of Cu6Sn5 and Cu3Sn Intermetallics on Growth and Evolution during Thermal Aging of Sn-Ag Solder Cu Joints", Journal of Electronic Materials, Vol.32, pp.1403-1413, 2003.
    [60] H. K. Kim, and K. N. Tu, "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening", PHYSICAL REVIEW B, Vol.53(23), pp.16027-16034, 1996.
    [61] H. K. Kim, and K. N. Tu, "Rate of consumption of Cu in soldering accompanied by ripening", Applied Physics Letters, Vol.67(14), pp.2002-2004, 1995.
    [62] A. T. Tan, A. W. Tan, and F. Yusof, "Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn-Ag-Cu/Cu solder joint during different thermal conditions", Sci Technol Adv Mater, Vol.16(3), pp.033505, 2015.
    [63] 李政賢, "Sn-Ag-xSb 無鉛錫銲接點微結構與低週疲勞之研究", 成功大學機械工程學系碩士論文, pp.1-102, 2003.
    [64] " Taiyo electric.Available:http://www.goot.jp/en/handakanren/bs-10/",
    [65] S. Tian, S. Li, J. Zhou, and F. Xue, "Thermodynamic characteristics, microstructure and mechanical properties of Sn-0.7Cu-xIn lead-free solder alloy", Journal of Alloys and Compounds, Vol.742, pp.835-843, 2018.
    [66] I. Dutta, D. Pan, R. A. Marks, and S. G. Jadhav, "Effect of thermo-mechanically induced microstructural coarsening on the evolution of creep response of SnAg-based microelectronic solders", Materials Science and Engineering: A, Vol.410-411, pp.48-52, 2005.
    [67] P. G. Harris, and K. S. Chaggar, "The role of intermetallic compounds in lead‐free soldering", Soldering & Surface Mount Technology, Vol.10, pp.38-52, 1998.
    [68] O. M. Abdelhadi, and L. Ladani, "IMC growth of Sn-3.5Ag/Cu system: Combined chemical reaction and diffusion mechanisms", Journal of Alloys and Compounds, Vol.537, pp.87-99, 2012.
    [69] K. N. Tu, "Cu/Sn interfacial reactions: thin-film case versus bulk case1", Materials Chemistry and Physics, Vol.46(2-3), pp.217-223, 1996.
    [70] P.Sungkhaphaitoon, and S.Chantaramanee, "Effects of Indium Content on Microstructural, Mechanical Properties and Melting Temperature of SAC305 Solder Alloys", Russian Journal of Non-Ferrous Metals, Vol.59(4), pp.385-392, 2018.
    [71] A. Sharif, and Y. C. Chan, "Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization", Journal of Alloys and Compounds, Vol.390(1-2), pp.67-73, 2005.

    無法下載圖示 校內:2025-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE