研究生: |
許恆嘉 Hsu, Heng-Chia |
---|---|
論文名稱: |
甲基安非他命在小鼠腦部紋狀體多巴胺神經元所引發神經毒性蛋白的標定 Targeting of Methamphetamine-induced Neurotoxic Proteins in Mouse Striatum |
指導教授: |
游一龍
Yu, Lung |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 行為醫學研究所 Institute of Behavioral Medicine |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 25 |
中文關鍵詞: | 多巴胺 、甲基安非他命 、質譜儀 、蛋白質 、二維蛋白質電泳 |
外文關鍵詞: | mass spectrometry, methamphetamine, dopamine, two-dimensional gel electrophoresis, proteins |
相關次數: | 點閱:66 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲基安非他命所引發的黑質紋狀體多巴胺神經毒性已知可受到蛋白質合成抑制劑所阻斷。這顯示了蛋白質的合成在甲基安非他命毒性的產生上扮演著關鍵性的角色。本研究的目的在於尋找這些涉及甲基安非他命神經毒性的蛋白質(特別是神經毒性蛋白)。在本研究中我們利用二維蛋白質電泳以及質譜儀的技術分離並鑑定出特定的蛋白質。實驗組是連續注射三劑甲基安非他命的小鼠,每劑的劑量是每公斤十毫克;控制組則是注射生理食鹽水的小鼠。所用以進行前述實驗步驟的組織為小鼠腦部的兩側紋狀體。經過電腦軟體以及統計分析之後我們發現,於實驗組當中有五個蛋白質的強度表現較控制組為強,另外有十五個蛋白質的強度表現則較控制組為弱,我們經由質譜儀鑑定出其中十一個蛋白質的身分。從上述實驗中,我們得以確認出與甲基安非他命所引發多巴胺神經毒性相關的蛋白質。接下去的研究重點將放在進一步去確立這些蛋白質在毒性機制中所扮演的角色。
Methamphetamine (MA)-induced nigrostriatal dopamine neurotoxicity can be reversed by protein synthesis inhibitor treatment, indicating the pivotal role of protein synthesis in this MA-induced dopaminergic neurotoxicity paradigm. This study aims to identify the specific neurotoxic proteins responsible for such nigrostriatal dopaminergic toxicity. Employing the two-dimensional gel electrophoresis (2-DE) technique, followed by mass spectrometry (MS), I obtained those proteins involved in such toxicity by contrasting the protein expression profiles of striatal samples dissected from MA-treated against them from saline-treated mice. To avoid necrotic and apoptotic confounds, striata were dissected out thirty minutes after the third dose of MA (10mg/kg for each dose) or saline administration. Approximately 300 spots were visualized by silver stain and analyzed on an ImagerMaster Labscan software for the quantitation of protein expression. Comparing the striatal protein expression profiles, five protein spots exhibited a significant increase in intensities and fifteen spots revealed a decrease in intensities in MA-treated group. Subsequent MS analysis results revealed and identified eleven among above protein spots with altered levels. By using this approach we are capable of identifying the candidates of neurotoxic and neuroprotective proteins involved in the MA-induced nigrostriatal dopamine neurotoxicity.
1. Bence, N. F., Sampat, R. M., & Kopito, R. R., Impairment of the ubiquitin-proteasome system by protein aggregation. Science., 292: 1552-1555, 2001.
2. Brazilai, A. & Melamed, E., Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends in molecular medicine., 9: 126-132, 2003.
3. Cataldo, A. M., Hamilton, D. J., Barnett, J. L., Paskevich, P. A., & Nixon, R. A., Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease. Journal of neuroscience., 16: 186-199, 1996.
4. Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L-S., & Li, L., Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s disease. The journal of biological chemistry., 279: 13256-13264, 2004.
5. Fahn, S., & Cohen, G., The oxidant stress hypothesis in Parkinson's disease : evidence supporting it. Annals of neurology., 32: 804-812, 1992.
6. Finnegan, K. T. & Karler R., Role for protein synthesis in the neurotoxic effects of methamphetamine in mice and rats. Brain research., 591: 160-164, 1992.
7. Feldman, R. S., Meyer, J. S., & Quenzer, L. F., Principles of neuropsychopharmacology., Sinauer Associates, Inc.,81-82, 1997.
8. Glickman, M. H. & Ciechanover, A., The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiological reviews., 82: 373-428, 2002.
9. Kita, T., Wagner, G. C., & Nakashima, T., Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption. Journal of Pharmacological Sciences., 92: 178-195, 2003.
10. Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., & Darnell, J. E., Molecular cell biology., 4th ed., W. H. Freeman and Company. 765-66, 2000.
11. Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A., & Mucke, L., Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science., 287: 1265-1269, 2000.
12. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G.., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G.., Golbe, L. I., & Nussbaum, R. L., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science., 276: 2045-2047, 1997.
13. Pu, C., Fisher, J. E., Cappon, G.. D., & Vorhees, C. V., The effects of amfonelic acid, a dopamine uptake inhibitor, on methamphetamine-induced dopaminergic terminal degeneration and astrocytic response in rat striatum. Brain research., 649(1-2): 217-24, 1994.
14. Ricaurte, G.A., Seiden, L. S., & Schuster, C. R., Further evidence that amphetamines produce long-lasting dopamine neurochemical deficits by destroying dopamine nerve fibers. Brain research., 303(2):359-64, 1984.
15. Schneider, D. L., The proton pump ATPase of lysosomes and related organelles of the vacuolar apparatus. Biochimica et biophysica acta., 895: 1-10, 1987.
16. Sonsalla, P. K., Nicklas, W. J., & Heikkila, R. E., Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science., 243: 398-400, 1989.
17. Sonsalla, P. K., Riordan, D. E., & Heikkila, R. E., Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice. The journal of pharmacology and experimental therapeutics., 256(2): 506-512, 1991.
18. Xie, T., Tong, L., Barrett, T., Yuan, J., Hatzidimitriou, G., McCann, U. D., Becker, K. G., Donovan, D. M., & Ricaurte, G. A., Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. The journal of neuroscience., 22(1): 274-283, 2002.
19. Yokoyama, H., Tsuchihashi, N., Kasai, N., Matsue, T., Uchida, I., Mori, N., Ohya-Nishiguchi, H., & Kamada, H., Hydrogen peroxide augmentation in a rat striatum after methamphetamine injection as monitored in vivo by a Pt-disk microelectrode. Biosensors and bioelectronics., 12(9-10): 1037-1041, 1997.