簡易檢索 / 詳目顯示

研究生: 李宜樺
Lee, Yi-Hua
論文名稱: 早幼粒細胞白血病鋅指蛋白對腦部發育功能之探討
Characterization of promyelocytic leukaemia zinc finger protein (PLZF) function in brain development
指導教授: 李宜釗
Lee, Yi-Chao
張文昌
Chang, Wen-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 74
中文關鍵詞: 早幼粒細胞白血病鋅指蛋白腦部發育調控作用
外文關鍵詞: PLZF, brain development, self-renewal
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不論是發育中或是成熟的腦部, self-renewal對於維持神經幹細胞 (neural stem cell, 神經幹細胞) 的數目相當重要。在神經系統發育的過程中,需要精確地維持神經幹細胞的self-renewal與神經元新生之間的平衡,才能確使發育後的神經系統具有正確的細胞類型及數目。目前對於神經幹細胞self-renewal的調控機制的瞭解仍相當有限。過去的研究發現Krüppel-like zinc finger 家族中的一員,zbtb16又稱為早幼粒白血病鋅指蛋白 (Promyelocytic leukemia zinc finger, PLZF),表現在早期的中樞神經系統,並隨著神經系統的發育在特定的區域受到調控。此外,PLZF在血球前趨細胞 (Hematopoietic stem cell) 及精原幹細胞 (spermatogonial stem cell, SCC) 中也都有表現,且被認為參與在胚胎發育、造血作用 (hematopoiesis) 及造精作用 (spermatohenesis) 中。在本論文中,我們發現PLZF在P19分化為神經細胞的過程中會短暫地表現。利用RNA 干擾技術 (RNA interference) 抑制PLZF表現,結果也顯示會降低神經幹細胞標記蛋白Nestin及Pax6的表現,同時在分化過程中形成的embryonal body 也較小 。上述實驗結果顯示PLZF在P19細胞進行神經細胞分化過程中對具有類似神經幹細胞特性的細胞有調控作用。更重要的是我們進一步發現,在PLZF基因突變造成功能缺失的小鼠中,其大腦半球明顯地小於野生型 (wild type) 及異型合子 (hetrozygote) 小鼠。顯示PLZF的確可能參與調控神經幹細胞的self-renewal。

    Self-renewal is important for the maintenance of the neural stem cell pool in developing and adult brains. During nervous system development, the proper balance between stem cell self-renewal and neurogenesis is essential to ensure that neural cells are produced in correct numbers and diverse types. The underlying molecular mechanisms that control neural stem cell self-renewal remain poorly understood. Zbtb16 is also called Promyelocytic leukemia zinc finger (PLZF), a Krüppel-like zinc finger gene, is expressed in spatially restricted and temporally dynamic patterns in the central nervous system. Moreover, PLZF is found to be required for maintenace of the stem cell of various lineages, such as hematopoietic stem cells and spermatogonial stem cells and implicated in embryonal development, hematopoiesis, and spermatogenesis [1-5]. In our study, PLZF shows a temporal expression pattern during neural differentiation of P19 cells. Inhibition of PLZF induction by RNA interference leads to attenuated expression of neural stem cell markers, Nestin and Pax6, and generated smaller embryoid bodies, suggesting that expression of PLZF regulates the neural stem cell-like properties. More importantly, we found that the cortical hemisphere of lu mice, a PLZF-mutant mice, is significantly smaller than that of WT and heterozygous littermates. These results indicate that PLZF may regulate neural stem cell self-renewal and involve in brain development.

    摘要 II 英文摘要 III 誌謝 IV 目錄 V 圖目錄 VII 附錄目錄 VIII 第一章 緒論 1 第一節 腦發育與神經元新生 (NEUROGENESIS) 1 第二節 外顯基因調控 (EPIGENETIC REGULATION) 與神經幹細胞的SELF-RENEWAL 2 第三節 P19 老鼠胚胎細胞瘤 (MOUSE EMBRYONAL CARCINOMA CELL) 3 第四節 早幼粒白血病鋅指蛋白 (PROMYELOCYTE LEUKEMIA ZINC FINGER PROTEIN, PLZF) 4 第五節 腦指蛋白 (BRAIN FINGER PROTEIN, BFP) ZNF179 6 第六節 泛素化 (UBIQUITINATION)與神經分化 7 第七節 實驗動機 7 第二章 實驗材料與方法 9 第一節 實驗材料 9 第二節 實驗方法 14 第三章 實驗結果 36 第一節 在P19 細胞分化為神經細胞的過程中,PLZF 基因MRNA 及蛋白質的表現 36 第二節 PLZF大量表現不足以誘導細胞轉變 38 第三節 抑制(KNOCKDOWN) PLZF的表現減少EMBRYONAL BODY的大小 40 第四節 抑制 PLZF的表現降低神經幹細胞標記基因的表現 41 第五節 PLZF 缺失小鼠的腦部較小 41 第六節 在P19分化為神經細胞的過程中PLZF的表現增加不是透過去甲基化 (DEMETHYLATION) 的調控 42 第七節 在P19分化為神經細胞的過程中PLZF 的降解可能受到ZNF179的調控 43 第四章 討論 45 第一節 PLZF的表現與神經幹細胞SELF-RENEWAL的相關性 45 第二節 PLZF與神經幹細胞 SELF-RENEWAL的相關性 46 第三節 PLZF調控神經幹細胞SELF-RENEWAL可能的作用機制 47 第四節 PLZF的後轉譯修飾 48 第五節 誘導P19細胞分化為神經細胞的過程中的複雜性 49 第六節 總結與未來工作 50 第五章 參考文獻 51 附圖 56 附錄 68 自述 74

    1. Barna M, Hawe N, Niswander L, Pandolfi PP: Plzf regulates limb and axial skeletal patterning. Nature genetics 2000, 25(2):166-172.
    2. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE: Plzf is required in adult male germ cells for stem cell self-renewal. Nature genetics 2004, 36(6):647-652.
    3. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, Orwig KE, Wolgemuth DJ, Pandolfi PP: Essential role of Plzf in maintenance of spermatogonial stem cells. Nature genetics 2004, 36(6):653-659.
    4. Labbaye C, Quaranta MT, Pagliuca A, Militi S, Licht JD, Testa U, Peschle C: PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein. Oncogene 2002, 21(43):6669-6679.
    5. Sobieszczuk DF, Poliakov A, Xu Q, Wilkinson DG: A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes & development, 24(2):206-218.
    6. Knoepfler PS: Stem cells on the brain. Archives of neurology 2008, 65(3):311-315.
    7. Chenn A, Walsh CA: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science (New York, NY 2002, 297(5580):365-369.
    8. Knoepfler PS, Cheng PF, Eisenman RN: N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes & development 2002, 16(20):2699-2712.
    9. Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ: The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS genetics 2009, 5(6):e1000511.
    10. Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ: Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Developmental biology 2007, 302(1):50-65.
    11. Dasgupta B, Gutmann DH: Neurofibromin regulates neural stem cell proliferation, survival, and astroglial differentiation in vitro and in vivo. J Neurosci 2005, 25(23):5584-5594.
    12. Groszer M, Erickson R, Scripture-Adams DD, Lesche R, Trumpp A, Zack JA, Kornblum HI, Liu X, Wu H: Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science (New York, NY 2001, 294(5549):2186-2189.
    13. Sato A, Sunayama J, Matsuda K, Tachibana K, Sakurada K, Tomiyama A, Kayama T, Kitanaka C: Regulation of neural stem/progenitor cell maintenance by PI3K and mTOR. Neuroscience letters, 470(2):115-120.
    14. Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D: Notch signaling is required to maintain all neural stem cell populations--irrespective of spatial or temporal niche. Developmental neuroscience 2006, 28(1-2):34-48.
    15. Singh RP, Shiue K, Schomberg D, Zhou FC: Cellular epigenetic modifications of neural stem cell differentiation. Cell transplantation 2009, 18(10):1197-1211.
    16. Sun G, Yu RT, Evans RM, Shi Y: Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 2007, 104(39):15282-15287.
    17. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB et al: Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008, 454(7205):766-770.
    18. Hatada I, Morita S, Kimura M, Horii T, Yamashita R, Nakai K: Genome-wide demethylation during neural differentiation of P19 embryonal carcinoma cells. Journal of human genetics 2008, 53(2):185-191.
    19. Shimozaki K, Namihira M, Nakashima K, Taga T: Stage- and site-specific DNA demethylation during neural cell development from embryonic stem cells. Journal of neurochemistry 2005, 93(2):432-439.
    20. Balasubramaniyan V, Boddeke E, Bakels R, Kust B, Kooistra S, Veneman A, Copray S: Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 2006, 143(4):939-951.
    21. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(47):16659-16664.
    22. McBurney MW, Rogers BJ: Isolation of male embryonal carcinoma cells and their chromosome replication patterns. Developmental biology 1982, 89(2):503-508.
    23. Martin PJ, Delmotte MH, Formstecher P, Lefebvre P: PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl Recept 2003, 1(1):6.
    24. Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI: Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. The Journal of cell biology 1982, 94(2):253-262.
    25. Chen KS, Manian P, Koeuth T, Potocki L, Zhao Q, Chinault AC, Lee CC, Lupski JR: Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nature genetics 1997, 17(2):154-163.
    26. Li JY, English MA, Ball HJ, Yeyati PL, Waxman S, Licht JD: Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. The Journal of biological chemistry 1997, 272(36):22447-22455.
    27. McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM, Licht JD: Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Molecular and cellular biology 2003, 23(24):9375-9388.
    28. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Licht JD: Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 1999, 18(4):925-934.
    29. Laudes M, Christodoulides C, Sewter C, Rochford JJ, Considine RV, Sethi JK, Vidal-Puig A, O'Rahilly S: Role of the POZ zinc finger transcription factor FBI-1 in human and murine adipogenesis. The Journal of biological chemistry 2004, 279(12):11711-11718.
    30. Mitchelmore C, Kjaerulff KM, Pedersen HC, Nielsen JV, Rasmussen TE, Fisker MF, Finsen B, Pedersen KM, Jensen NA: Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia. The Journal of biological chemistry 2002, 277(9):7598-7609.
    31. Kukita A, Kukita T, Ouchida M, Maeda H, Yatsuki H, Kohashi O: Osteoclast-derived zinc finger (OCZF) protein with POZ domain, a possible transcriptional repressor, is involved in osteoclastogenesis. Blood 1999, 94(6):1987-1997.
    32. Cifuentes-Diaz C, Bitoun M, Goudou D, Seddiqi N, Romero N, Rieger F, Perin JP, Alliel PM: Neuromuscular expression of the BTB/POZ and zinc finger protein myoneurin. Muscle & nerve 2004, 29(1):59-65.
    33. Ahmad KF, Engel CK, Prive GG: Crystal structure of the BTB domain from PLZF. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(21):12123-12128.
    34. Bardwell VJ, Treisman R: The POZ domain: a conserved protein-protein interaction motif. Genes & development 1994, 8(14):1664-1677.
    35. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A: Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998, 16(19):2549-2556.
    36. Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD: The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Molecular and cellular biology 1998, 18(9):5533-5545.
    37. Avantaggiato V, Pandolfi PP, Ruthardt M, Hawe N, Acampora D, Pelicci PG, Simeone A: Developmental analysis of murine Promyelocyte Leukemia Zinc Finger (PLZF) gene expression: implications for the neuromeric model of the forebrain organization. J Neurosci 1995, 15(7 Pt 1):4927-4942.
    38. Cook M, Gould A, Brand N, Davies J, Strutt P, Shaknovich R, Licht J, Waxman S, Chen Z, Gluecksohn-Waelsch S et al: Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proceedings of the National Academy of Sciences of the United States of America 1995, 92(6):2249-2253.
    39. Green MC: The position of luxoid in linkage group II of the mouse. The Journal of heredity 1961, 52:297-300.
    40. Ching YH, Wilson LA, Schimenti JC: An allele separating skeletal patterning and spermatogonial renewal functions of PLZF. BMC developmental biology, 10(1):33.
    41. Saurin AJ, Borden KL, Boddy MN, Freemont PS: Does this have a familiar RING? Trends in biochemical sciences 1996, 21(6):208-214.
    42. Borden KL, Freemont PS: The RING finger domain: a recent example of a sequence-structure family. Current opinion in structural biology 1996, 6(3):395-401.
    43. Joazeiro CA, Weissman AM: RING finger proteins: mediators of ubiquitin ligase activity. Cell 2000, 102(5):549-552.
    44. Orimo A, Inoue S, Ikeda K, Sato M, Kato A, Tominaga N, Suzuki M, Noda T, Watanabe M, Muramatsu M: Molecular cloning, localization, and developmental expression of mouse brain finger protein (Bfp)/ZNF179: distribution of bfp mRNA partially coincides with the affected areas of Smith-Magenis syndrome. Genomics 1998, 54(1):59-69.
    45. Fang S, Weissman AM: A field guide to ubiquitylation. Cell Mol Life Sci 2004, 61(13):1546-1561.
    46. Pickart CM: Mechanisms underlying ubiquitination. Annual review of biochemistry 2001, 70:503-533.
    47. Zhao X, D DA, Lim WK, Brahmachary M, Carro MS, Ludwig T, Cardo CC, Guillemot F, Aldape K, Califano A et al: The N-Myc-DLL3 cascade is suppressed by the ubiquitin ligase Huwe1 to inhibit proliferation and promote neurogenesis in the developing brain. Developmental cell 2009, 17(2):210-221.
    48. Zhao X, Heng JI, Guardavaccaro D, Jiang R, Pagano M, Guillemot F, Iavarone A, Lasorella A: The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature cell biology 2008, 10(6):643-653.
    49. Akamatsu W, DeVeale B, Okano H, Cooney AJ, van der Kooy D: Suppression of Oct4 by germ cell nuclear factor restricts pluripotency and promotes neural stem cell development in the early neural lineage. J Neurosci 2009, 29(7):2113-2124.
    50. Doulatov S, Notta F, Rice KL, Howell L, Zelent A, Licht JD, Dick JE: PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes & development 2009, 23(17):2076-2087.
    51. Tarnok A, Ulrich H, Bocsi J: Phenotypes of stem cells from diverse origin. Cytometry A, 77(1):6-10.
    52. Kostereva N, Hofmann MC: Regulation of the spermatogonial stem cell niche. Reproduction in domestic animals = Zuchthygiene 2008, 43 Suppl 2:386-392.
    53. Li LC, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics (Oxford, England) 2002, 18(11):1427-1431.
    54. Lendahl U, Zimmerman LB, McKay RD: CNS stem cells express a new class of intermediate filament protein. Cell 1990, 60(4):585-595.
    55. Xue XJ, Yuan XB: Nestin is essential for mitogen-stimulated proliferation of neural progenitor cells. Molecular and cellular neurosciences.
    56. Nishino J, Kim I, Chada K, Morrison SJ: Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 2008, 135(2):227-239.
    57. Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, Kaldis P: Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Developmental cell 2006, 10(5):563-573.
    58. Buscarlet M, Perin A, Laing A, Brickman JM, Stifani S: Inhibition of cortical neuron differentiation by Groucho/TLE1 requires interaction with WRPW, but not Eh1, repressor peptides. The Journal of biological chemistry 2008, 283(36):24881-24888.
    59. Hatakeyama J, Kageyama R: Notch1 expression is spatiotemporally correlated with neurogenesis and negatively regulated by Notch1-independent Hes genes in the developing nervous system. Cereb Cortex 2006, 16 Suppl 1:i132-137.
    60. Kageyama R, Ohtsuka T, Kobayashi T: Roles of Hes genes in neural development. Development, growth & differentiation 2008, 50 Suppl 1:S97-103.
    61. Shi Y, Sun G, Zhao C, Stewart R: Neural stem cell self-renewal. Critical reviews in oncology/hematology 2008, 65(1):43-53.
    62. Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A: Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 1995, 86(12):4544-4552.
    63. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ: Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003, 425(6961):962-967.
    64. Van Damme E, Laukens K, Dang TH, Van Ostade X: A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. International journal of biological sciences, 6(1):51-67.
    65. Regad T, Bellodi C, Nicotera P, Salomoni P: The tumor suppressor Pml regulates cell fate in the developing neocortex. Nature neuroscience 2009, 12(2):132-140.
    66. Howard RM, Sundaram MV: C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. Genes & development 2002, 16(14):1815-1827.
    67. Chao TT, Chang CC, Shih HM: SUMO modification modulates the transrepression activity of PLZF. Biochemical and biophysical research communications 2007, 358(2):475-482.
    68. Kang SI, Chang WJ, Cho SG, Kim IY: Modification of promyelocytic leukemia zinc finger protein (PLZF) by SUMO-1 conjugation regulates its transcriptional repressor activity. The Journal of biological chemistry 2003, 278(51):51479-51483.
    69. Kang SI, Choi HW, Kim IY: Redox-mediated modification of PLZF by SUMO-1 and ubiquitin. Biochemical and biophysical research communications 2008, 369(4):1209-1214.

    下載圖示 校內:2013-08-12公開
    校外:2013-08-12公開
    QR CODE