簡易檢索 / 詳目顯示

研究生: 張祐嘉
Chang, You-Jia
論文名稱: 高鹼性鈣基骨泥性質研究(I)
Properties of High pH Calcium-based Orthopedic Cement(I)
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 硫酸鈣磷酸鈣骨泥抗菌
外文關鍵詞: calcium phosphate, calcium sulfate, bone cement, antibacterial
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前由CMRT(Cana Materials Research Team)經多年努力所開發出之鈣基骨泥(Calcium-based cement, CBC)具有優越的物化性質、生物相容性及骨引導性,對骨取代物而言,為了進一步降低骨科、牙科手術術後感染的風險,期望以添加非抗生素的方式對材料具備抗菌性,因此以CMRT(Cana Materials Research Team)開發的鈣基骨泥(Calcium-based cement, CBC)為基礎,製備抗菌CBC促使環境pH值提升以達到抗菌的效果,但因添加抗菌粉末將使基材CBC的反應互相牽制導致機械強度下降,故此研究決定以改善製程來提升材料的機械性質。
    雖然抗菌粉末的添加能有效使材料具備抗菌性,卻也使材料的機械強度降低,為了減少抗菌粉末與基底材料反應所造成的影響性,以加壓的方式來改善此問題,探討不同製程對材料性質之影響。
    研究成果可以發現,將抗菌粉末與不同液體混合、加壓成形後加入CBC基材中將能提升機械強度,並且搭配適當的液粉比,具有良好的注射性與不崩解性,在生物實驗方面,則擁有良好抗菌性,在浸泡Medium二天後之試片細胞存活率達70%以上。

    The calcium phosphate/calcium sulfate composite developed by CMRT(Cana Materials Research Team) has excellent physical properties, chemical properties and biocompatibility. Generally, antibiotics are added to bone substitute to decrease the possibility of postoperative infection.
    In our study, we chose antibacterial powder as the antibacterial additive. Though the addition of antibacterial powder dramatically enhanced the antibacterial capacity, it took away the mechanical strength. To solve this problem, we tried to use pressing powder by decreasing the interaction between antibacterial powder and matrix material. The results show that the addition of the powder is capable of improving compressive strength. By the way, it also attains enough mechanical strength without dispersion. In the aspect of biology, it has not only enough antibacterial capacity but also good biocompatibility which is proved by cytotoxicity experiments.

    中文摘要 I 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 總序論 1 1-1 前言 1 1-2 抗菌生物材料簡介 2 1-2-1 抗菌機制與材料 2 1-3 人體骨組織簡介 4 1-3-1 人體骨組織簡介 4 1-3-2 骨骼的創傷與修復機制 8 1-4 骨科植入材料 9 1-4-1 骨取代物的種類及來源 9 1-4-2 骨取代物在生物學上的要求 10 第二章 理論基礎及文獻回顧 12 2-1 硫酸鈣鹽類簡介 12 2-1-1 硫酸鈣在醫學用途發展 12 2-1-2 硫酸鈣的性質簡介 13 2-2 磷酸鈣鹽類簡介 17 2-2-1 正磷酸鈣系之特性簡介 17 2-2-2 磷酸鈣系骨水泥發展 21 2-3人工植入物之感染與應對 23 2-4 研究目的 25 第三章 材料及實驗方法 26 3-1 實驗流程圖 26 3-2 工作時間(Working time)及硬化時間(Setting time)測試 26 3-3 崩解性測試 27 3-4 孔隙度及重量損失 28 3-5 抗壓強度 29 3-6 pH值量測 31 3-7 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析32 3-8 X光繞射(X-Ray Diffraction, XRD)分析 34 3-9抗菌環實驗I 36 3-10抗菌環實驗II 37 3-11直接殺菌實驗 40 3-12細胞毒性實驗 41 第四章 結果與討論 44 4-1 不同持壓時間與模具製作抗菌粉末對抗菌骨泥性質之影響 44 4-1-1 N mm圓柱模具以不同持壓時間製作抗菌粉末對注射性及崩解性變化之影響 44 4-1-2 N mm圓柱模具以不同持壓時間製作抗菌粉末對抗壓強度之影響 49 4-1-3 M mm圓柱模具以不同持壓時間製作抗菌粉末對注射性及崩解性變化之影響 50 4-1-4 M mm圓柱模具以不同持壓時間製作抗菌粉末對抗壓強度之影響55 4-1-5 M mm圓柱模具以不同液粉比之工作時間及設定時間影響57 4-2 CBCA不同球混製程性質之研究 59 4-2-1 不同球混製程對注射及崩解性之影響 59 4-2-2 不同球混製程對工作時間、設定時間之影響 63 4-2-3 不同球混製程對pH值之影響 64 4-2-4 不同球混製程對抗壓強度之影響 65 4-3 CBCA-8長時間浸泡於Hank’s solution之性質研究 67 4-3-1 CBCA-8之崩解性與注射性分析 67 4-3-2 CBCA-8浸泡於Hank’s solution 之孔隙度、重量損失分析68 4-3-3 CBCA-8浸泡於Hank’s solution 之抗壓強度分析 70 4-3-4 CBCA-8浸泡於Hank’s solution及Saline之長時間pH值變化71 4-3-5 CBCA-8浸泡於Hank’s solution 之SEM破斷面分析 74 4-4 生物性實驗 80 4-4-1 CBCA-8抗菌性實驗 80 4-4-2 CBCA-8 & CBCA-9抑菌環測試 83 4-4-3 CBCA-8 & CBCA-9細胞毒性測試 84 第五章 結論 92 參考文獻 94

    Ahmed, W., Zhai, Z., & Gao, C. (2019). Adaptive antibacterial biomaterial surfaces and their applications. Materials Today Bio, 2, 100017.
    Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., . . . Schnettler, R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18), 4383-4391.
    Anderson, A. J., Clark, A. H., & Gray, S. (2001). THE OCCURRENCE AND ORIGIN OF ZABUYELITE (Li2CO3) IN SPODUMENE-HOSTED FLUID INCLUSIONS: IMPLICATIONS FOR THE INTERNAL EVOLUTION OF RARE-ELEMENT GRANITIC PEGMATITES. The Canadian Mineralogist, 39(6), 1513-1527.
    Apelt, D., Theiss, F., El-Warrak, A. O., Zlinszky, K., Bettschart-Wolfisberger, R., Bohner, M., . . . von Rechenberg, B. (2004). In vivo behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials, 25(7), 1439-1451.
    Bauer, T. W., & Muschler, G. F. (2000, 2). Bone Graft Materials: An Overview of the Basic Science. Clinical Orthopaedics and Related Research, 10-27.
    Bell, W. H. (1964). Resorption characteristics of bone and bone substitutes. Oral Surgery, Oral Medicine, Oral Pathology, 17(5), 650-657.
    Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51.
    Bohner, M. (2004). New hydraulic cements based on α-tricalcium phosphate–calcium sulfate dihydrate mixtures. Biomaterials, 25(4), 741-749.
    Bohner, M., & Baroud, G. (2005). Injectability of calcium phosphate pastes. Biomaterials, 26(13), 1553-1563.
    Bose, S., Fielding, G., Tarafder, S., & Bandyopadhyay, A. (2013). Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends in Biotechnology, 31(10), 594-605.
    Buchholz, H., & Engelbrecht, H. (1970). Depot effects of various antibiotics mixed with Palacos resins. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen, 41(11), 511-515.
    Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533-8554.
    Chang, K.-C., Chang, C.-C., Chen, W.-T., Hsu, C.-K., Lin, F.-H., & Lin, C.-P. (2014). Development of calcium phosphate/sulfate biphasic cement for vital pulp therapy. Dental Materials, 30(12), e362-e370.
    Chen, Y., Whetstone, H. C., Lin, A. C., Nadesan, P., Wei, Q., Poon, R., & Alman, B. A. (2007). Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS medicine, 4(7), e249-e249.
    Chow, L. (1988). Calcium phosphate materials: reactor response. Advances in dental research, 2(1), 181-186.
    Coetzee, A. S. (1980). Regeneration of Bone in the Presence of Calcium Sulfate. Archives of Otolaryngology, 106(7), 405-409.
    Constantz, B. R., Ison, I. C., Fulmer, M. T., Poser, R. D., Smith, S. T., VanWagoner, M., . . . Rosenthal, D. I. (1995). Skeletal repair by in situ formation of the mineral phase of bone. Science, 67(5205), 1796-1799.
    Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31(7), 1465-1485.
    Dorozhkin, S. V. (2011). Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter, 1(2), 121-164.
    Dorozhkin, S. V. (2016a). Calcium Orthophosphate‐Based Bioceramics and Biocomposites: Wiley‐VCH Verlag GmbH & Co. KGaA.
    Dorozhkin, S. V. (2016b). Multiphasic calcium orthophosphate (CaPO4) bioceramics and their biomedical applications. Ceramics International, 42(6), 6529-6554.
    Dressman, H. (1892). Uber Knochenplombierung. Beitr Klin Chir, 9, 804-810.
    Ebrahimi, M., Botelho, M. G., & Dorozhkin, S. V. (2017). Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. Materials Science and Engineering: C, 71, 1293-1312.
    Frame, J. W. (1975). Porous calcium sulphate dihydrate as a biodegradable implant in bone. Journal of Dentistry, 3(4), 177-187.
    Harris, L., Tosatti, S., Wieland, M., Textor, M., & Richards, R. (2004). Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly (L-lysine)-grafted-poly (ethylene glycol) copolymers. Biomaterials, 25(18), 4135-4148.
    Hendriks, J., Van Horn, J., Van Der Mei, H., & Busscher, H. (2004). Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials, 25(3), 545-556.
    Hu, G., Xiao, L., Fu, H., Bi, D., Ma, H., & Tong, P. (2010). Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. Journal of Materials Science: Materials in Medicine, 21(2), 627-634.
    Ibrahim, M. Z., Sarhan, A. A. D., Yusuf, F., & Hamdi, M. (2017). Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – A review article. Journal of Alloys and Compounds, 714, 636-667.
    Ladd, A. L., & Wirsing, K. (2010). CHAPTER 24 - Bone Graft Substitutes. In D. J. Slutsky (Ed.), Principles and Practice of Wrist Surgery (pp. 277-288). Philadelphia: W.B. Saunders.
    Lewicki, M., Paez, H., & Mandalunis, P. M. (2006). Effect of lithium carbonate on subchondral bone in sexually mature Wistar rats. Experimental and Toxicologic Pathology, 58(2), 197-201.
    Li, F., Liu, J., Yang, G., Pan, Z., Ni, X., Xu, H., & Huang, Q. (2013). Effect of pH and succinic acid on the morphology of α-calcium sulfate hemihydrate synthesized by a salt solution method. Journal of Crystal Growth, 374, 31–36. doi:10.1016/j.jcrysgro.2013.03.042
    Li, L., Wang, R., Li, B., Liang, W., Pan, H., Cui, X., . . . Li, B. (2017). Lithium doped calcium phosphate cement maintains physical mechanical properties and promotes osteoblast proliferation and differentiation. J Biomed Mater Res B Appl Biomater, 105(5), 944-952.
    Miller, M. D., & Thompson, S. R. (2015). Miller's Review of Orthopaedics, 7th Edition: Elsevier.
    Moghanian, A., Firoozi, S., Tahriri, M., & Sedghi, A. (2018). A comparative study on the in vitro formation of hydroxyapatite, cytotoxicity and antibacterial activity of 58S bioactive glass substituted by Li and Sr. Materials Science and Engineering: C, 91, 349-360.
    Nikita, E. (2017). Chapter 1 - The Human Skeleton. In E. Nikita (Ed.), Osteoarchaeology (pp. 1-75): Academic Press.
    Nilsson, M., Fernández, E., Sarda, S., Lidgren, L., & Planell, J. A. (2002). Characterization of a novel calcium phosphate/sulphate bone cement. Journal of Biomedical Materials Research, 61(4), 600-607.
    Paasche, G., Ceschi, P., Löbler, M., Rösl, C., Gomes, P., Hahn, A., . . . Stöver, T. (2011). Effects of metal ions on fibroblasts and spiral ganglion cells. Journal of Neuroscience Research, 89(4), 611-617.
    Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2004). Biomaterials science: an introduction to materials in medicine: Elsevier.
    Serraj, S., Michaïlesco, P., Margerit, J., Bernard, B., & Boudeville, P. (2002). Study of a hydraulic calcium phosphate cement for dental applications. Journal of Materials Science: Materials in Medicine, 13(1), 125-131.
    Shi, Z., Neoh, K. G., Kang, E. T., & Wang, W. (2006). Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials, 27(11), 2440-2449.
    Singh, N., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in crystal growth and characterization of materials, 53(1), 57-77.
    Singh, N. B., & Middendorf, B. (2007). Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in Crystal Growth and Characterization of Materials, 53(1), 57-77.
    Taylor, D., Hazenberg, J. G., & Lee, T. (2007). Living with cracks: Damage and repair in human bones. Nature Materials, 6, 262-268.
    Titsinides, S., Agrogiannis, G., & Karatzas, T. (2019). Bone grafting materials in dentoalveolar reconstruction: A comprehensive review. Japanese Dental Science Review, 55(1), 26-32.
    Urban, R. M., Turner, T. M., Hall, D. J., Inoue, N., & Gitelis, S. (2007). Increased Bone Formation Using Calcium Sulfate-Calcium Phosphate Composite Graft. A Publication of The Association of Bone and Joint Surgeons® | CORR®, 459.
    Yildirimer, L., Thanh, N. T., Loizidou, M., & Seifalian, A. M. (2011). Toxicology and clinical potential of nanoparticles. Nano today, 6(6), 585-607.
    Zamani, A., Omrani, G. R., & Nasab, M. M. (2009). Lithium's effect on bone mineral density. Bone, 44(2), 331-334.

    無法下載圖示 校內:2025-08-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE