簡易檢索 / 詳目顯示

研究生: 程天馨
Cheng, Tien-Hsin
論文名稱: 利用巨觀與微觀方式探討不同岩性在大規模崩塌下之機制
Discussion of the mechanism of different lithologies on large scale landslide:from micro- to macro- approaches
指導教授: 陳燕華
Chen, Yen-Hua
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 163
中文關鍵詞: 高速旋剪試驗摩擦熱黏土礦物小林崩塌草嶺崩塌
外文關鍵詞: High-speed shear test, Frictional heating, clay mineral, Siaolin landslide, Caoling landslide
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要I ABSRACTIII 致謝X 目錄XI 圖目錄XV 表目錄XXI 第一章 緒論1 1.1 前言1 1.2 研究動機與目的2 1.3 研究架構3 第二章 文獻回顧5 2.1 研究之山崩案例5 2.1.1 小林村 — 獻肚山大規模崩塌5 2.1.2 1999年草嶺大規模崩塌7 2.1.3 古亭坑泥岩9 2.2 礦物特徵對山崩與斷層之影響11 2.3 微觀顯微組構對斷層與山崩滑移之影響與探討16 2.4 旋剪試驗對斷層與山崩滑移之模擬與力學特性21 2.5 摩擦熱對斷層與山崩滑移之探討24 2.6 水對斷層與山崩滑移之影響28 2.7黏土礦物結構29 2.7.1 高嶺石29 2.7.2 伊萊石29 2.7.3 綠泥石30 2.7.4 蒙脫石30 第三章 研究方法31 3.1 採樣區域31 3.1.1 小林村31 3.1.2 921草嶺山崩32 3.1.3 古亭坑泥岩33 3.2 實驗流程34 3.2.1 現地岩樣微觀加熱試驗34 3.2.2 旋剪試驗35 3.2.3 黏土礦物萃取法35 3.3 實驗分析儀器36 3.3.1 X光繞射分析儀36 3.3.2 高解析場發式掃描電子顯微鏡37 3.3.3 同步熱分析儀39 3.3.4 同步輻射紅外顯微光譜40 3.3.5 同步輻射微米級電腦斷層掃描42 3.3.6 同步輻射X光粉末繞射43 第四章 結果44 4.1小林村44 4.1.1 鹽水坑頁岩之礦物特性結果44 4.1.2 糖恩山砂岩之礦物特性結果53 4.1.3 綜合比較57 4.1.4 鹽水坑頁岩旋剪試驗結果64 4.1.5 鹽水坑頁岩旋剪試驗微觀組構結果72 4.1.6 糖恩山旋剪試驗結果79 4.1.7 糖恩山砂岩旋剪試驗微觀組構結果80 4.1.8 旋剪前後X光繞射分析結果84 4.2 草嶺卓蘭層86 4.2.1 卓蘭頁岩之礦物特性結果86 4.2.2 卓蘭砂岩之礦物特性結果90 4.2.3 綜合比較94 4.2.4 卓蘭頁岩旋剪試驗結果95 4.2.5 卓蘭頁岩旋剪試驗微觀組構結果100 4.2.6 卓蘭砂岩旋剪試驗結果103 4.2.7 卓蘭砂岩旋剪試驗微觀組構結果104 4.2.8 旋剪前後X光繞射分析結果108 4.3 古亭坑泥岩110 4.3.1 古亭坑泥岩之礦物特性結果110 4.3.2 古亭坑泥岩旋剪試驗結果116 4.3.3 古亭坑泥岩旋剪試驗微觀組構結果120 4.3.4 旋剪前後X光繞射分析結果123 第五章 討論125 5.1 研究區域崩塌滑移機制探討125 5.1.1 小林村滑移機制探討125 5.1.2 草嶺滑移機制探討130 5.2 不同岩性之岩石特性與滑移特性比較131 5.2.1岩石礦物特性比較131 5.2.2 不同岩性滑移特性比較134 第六章 結論139 參考文獻140 附錄一:旋剪試驗參數列145 附錄二:旋剪試驗作圖148

    Al-Wardy, W., Zimmerman, R., W., 2004, Effective stress law for the permeability of clay-rich sandstones., Journal of Geophysical Research, 109, B04203.
    Akshoy, K.C., 2003, DTA study of perheated kaolinite in the mullite formation region., Thermochimica Acta., 398, 203-209.
    Boutareaud, S., Calugaru, D.-G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., & Shimamoto, T., 2008, Clay-clast aggregates: A new textural evidence for seismic fault sliding?, Journal of Geophysical Research, 35, L05302¬-L05302.
    Boutareaud, S., Boullier, A.-M., Andreani, M., Calugaru, D.-G., Beck, P., Song, S.-R., & Shimamoto, T., 2010, Clay-clast aggregates in gouges: New textural evidence for seismic faulting., Journal of Geophysical Research, 115, B02408.
    Brantut, N., Schubnel, A., Rouzaud, J.-N., Brunet, F., Shimamoto, T., 2008. High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics., Journal of Geophysical Research, 113, B10401.
    Brindley, G.W., Ali, S.Z., 1950, Thermal transformations in magnesium chlorites., Acta Crystallographica, 3, 25-30.
    Byerlee, J., Mjachkin, V., Summers, R., Voevoda, O., 1978, Structures developed in fault gouge during stable sliding and stick-slip., Tectonophysics, 44(1-4), 161-171.
    Caillère, S., Hénin, S., 1960, Relationship between the crystallochemical constitution of phyllites and their dehydration temperature, application in the case of chlorites., Bulletin of Society France Ceramic, 48, 63-67.
    Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., 2006. Natural and experimental evidence of melt lubrication of faults during earthquakes., Science, 311(5761), 647-649.
    Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., 2011, Fault lubrication during earthquakes., Nature, 471(7339), 494-498.
    Han, R., Shimamoto, T., Hirose, T., Ree, J.-H., J. i. Ando, 2007, Ultralow friction of carbonate faults caused by thermal decomposition., Science, 316(5826), 878-881.
    Han, R., Hirose, T.,Shimamoto, T., 2010, Strong velocity weakening and powder lubrication of simulated carbon faults at seismic slip rates., Journal of Geophysical Research, 115, B03412.
    Han, R., Hirose, T., Jeong, G.Y., Ando, J.-i., Mukoyoshi, H., 2014, Frictional melting of clayey gouge during seismic fault slip: experimental observation and implications., Geophysical Research Letters, 41(15), 5457-5466.
    Huang, W.H., Longo, J.M., Pevear, D.R., 1993, An experimental derived kinetic model for the smectite-to-illite conversion and its use as a geothermometer., Clays and Clay Minerals, 41, 162-177.
    Hirono, T., Kameda, J., Kanda, H., Tanikawa, W., Ishikawa, T., 2014, Mineral assemblage anomalies in the slip zone of the 1999 Taiwan Chi-Chi earthquake: ultrafine particles preserved only in the latest slip zone., Geophysical Research Letters, 41(9), 3052-3059.
    Hirose, T., Shimamoto, T., 2005, Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting., Journal of Geophysical Research, 110, B05202.
    Kitajima, H., Chester, J. S., Chester, F. M., Shimamoto, T., 2010, High-speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution., Journal of Geophysical Research, 115(B8).
    Killingley, J.S., Day, S.J., 1990, Dehydroxylation kinetics of kaolinite and montmorillonite from Queenland Tertiary oil shale deposits., Fuel 69 , 10, 1145-1149.
    Kuo, L.-W., Song, S.-R., Yeh, E.-C., Chen, H.-F., 2009, Clay mineral anomalies in the fault zone of the Chelungpu Fault, Taiwan, and their implications., Geophysical Research Letters, 36, L18306.
    Kuo, L.-W., Song, S.-R., Huang, L., Yeh, E.-C., Chen, H.-F., 2011, Temperature estimates of coseismic heating in clay-rich fault gouges, the Chelungpu fault zones, Taiwan., Tectonophysics, 502, 315-327.
    Kuo, L.-W., Hsiao, H.-C., Song, S.-R., Sheu, H.-S., Suppe, J., 2014, Coseismic thickness of principal slip zone from the Taiwan Chelungpu fault Drilling Project-A (TCDP-A) and correlated fracture energy., Tectonophysics, 619-620, 29-35.
    Kuo, L.-W., Song, Y.-F., Yang, C.-H., Song, S.-R., Wang, C.-C., Dong, J.-J., Suppe, J., Shimamoto, T., 2015, Ultrafine spherical quartz formation during seismic fault slip: Natural and experimental evidence and its implications., Tectonophysics, 664, 98-108.
    Kwon, O., Kronenberg, A. K., Gangi, A. F., Johnson, B., 2001, Permeability of Wilcox shale and its effective pressure law., Journal of Geophysical Research: Solid Earth, 106(B9), 19339-19353.
    Li, J., Lin, H., Li, J., Wu, J., 2009, Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite., Journal of the European Ceramic Society, 29(14), 2929-2936.
    Logan, J.M., Friedman, M., Higgs, N., Dengo, C., Shimamoto, T., 1979, Experimental studies of simulated fault gouge and their application to studies of natural fault zone, Proceedings of Conference VIII: Analysis of actual fault zones in bedrock., Open-File Report-U.S. Geological Survey, 305-343.
    Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., 2007, Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake., Geophysical Research Letters, 34, L01308.
    Nutting, P.G., 1943. Some standard thermal dehydration curves of minerals. U. S., Geological Survey, Profess paper, 197E, 197-216.
    Ptáček, P., Kubátová, D., Havlica, J., Brandštetr, J., Šoukal, F., Opravil, T., 2010, The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis., Powder Technology, 204(2-3), 222-227.
    Sawai, M., Shimamoto, T., Togo, T., 2012. Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes., Journal of Structural Geology, 38, 117-138.
    Sassa, K., Fukuoka, H., Wang, G., Ishikawa, N., 2004, Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics., Landslides, 1, 7-19 .
    Schuck, B., Janssen, C., Schleicher, A.M., Toy, V.G., Dresen, G., 2018, Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault., Journal of Structural Geology, 110, 172-186.
    Shimamoto, T., Logan, J.M., 1981, Effects of simulated clay gouges on the sliding behavior of Tennessee sandston., Tectonophysics, 75(3-4), 243-255.
    Shimamoto, T., Togo, T., 2012, Earthquakes in the lab., Science, 338(6103), 54-55.
    Spray, J.G., 1987, Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane., Journal of Structural Geology, 9(1), 49-60.
    Tang, B., Zhu C., Xu, M., Chen, T., Hu, S., 2019, Thermal conductivity of sedimentary rocks in the Sichuan basin Southwest China., Energy Exploration and Exploitation, 37(2), 691-720.
    Tanikawa, W., Shimamoto, T., 2009. Frictional and transport properties of the Chelungpu fault from shallow borehole data and their correlation with seismic behavior during the 1999 Chi-Chi earthquake., Journal of Geophysical Research, 114, B01402 .
    Temuujin, J., Okada, K., MacKenzie, K., J., D., Jadambaa, T., 1998, The effect of water vapour atmospheres on the thermal transformation of kaolinite investigated by XRD, FTIR, and solid state MAS NMR., Journal of the European Ceramic Society, 19, 105-112.
    Togo, T., Ma, S.L., Hirose, T., 2011, High-velocity friction of faults:A review and implication for landslide studies., The Next Generationof Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, 205-216.
    Togo, T., Shimamoto, T., 2012, Energy partition for grain crushing in quartz gouge during subseismic to seismic fault motion: An experimental study., Journal of Structural Geology, 38, 139-155.
    Wilson, B., Dewers, T., Reches, Z., Brune, J., 2005. Particle size and energetics of gouge from earthquake rupture zones., Nature, 434, 749-752.
    Wu, J.-H., Chen, J.-H., Lu, C.-W., 2013, Investigation of the Hsien-du-Shan rock avalanche caused by typhoon Morakot in 2009 at Kaohsiung county, Taiwan., International Journal of Rock Mechanics and Mining Sciences, 60, 148-159.
    Yao, L., Ma, S., Platt, J. D., Niemeijer, A. R., Shimamoto, T., 2016, The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities., Geology, 44(1), 63-66.
    Zhang, F.Y., Wang, G.H., Kamai, T., Chen, W., Zhang, D., Yang, J., 2013, Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution., Engineering Geology, 155, 69-79.
    Zoback, M. D., and Byerlee, J. D., 1975, Permeability and effective stress, Geologic notes., American Association of Petroleum Geologists Bulletin, 59(1), 154-158.
    陳時祖、楊家國,1986,台灣西南部地區泥岩坡地沖蝕特性之研究(III) ,行政院國家科學委員會防災科技研究報告,75-18。
    陳培源,2006,《台灣地質》,台灣省應用地質技師公會。
    陳文山、俞何興、俞震甫、鍾孫霖、林正洪、林啟文、游能悌、吳逸民、王國龍,2016,《臺灣地質概論》,中華民國地質學會。
    唐昭榮、胡植慶、羅佳明、林銘郎,2009,遽變式山崩之PFC3D模擬初探-以草嶺與小林村為例,地工技術,122,143-152。
    李錫堤、董家鈞、林銘郎,2009,小林村災變之地質背景探討,地工技術,122,87-94。
    李錫堤,2011,草嶺大崩山之地質與地形演變,中華水土保持學報,42(4) , 325-335。
    洪如江、李錫堤、林美聆、林銘郎、鄭富書、陳正興,2000,天塹可以飛渡、崩山足以斷流(草嶺順向坡滑動),地工技術,77,5-18。
    葉信宏,1999,以中空三軸試驗探討泥岩材料之力學行為研究,成功大學土木工程研究所碩士論文。
    楊沂恩, 2007,泥岩地區邊坡坡面保護新工法之研究,成功大學土木工程研究所博士論文。
    蔡金郎,1984,台灣西南部泥岩層礦物等之研究, 國科會計畫報告,NSC-73-0414,6-11。
    李德河、蔡錦松、翁俊德,1984,泥岩吸水破壞過程及其穩定方法之研究,國科會防災科技研究報告,73-15。
    顏富士,1987,台灣西南部泥岩的崩解行為與其顯微構造關係,行政院國科會防災科技研究報告, 75-30。
    顏富士、蔡鎰輝,1985,台灣西南部主要泥岩坡地所含泥岩之物化性質,行政院國家科學委員會防災科技研究報告,74-09。
    國家災害防救科技中心,2009,莫拉克颱風災害概述,地工技術,121,15-24。。
    鳥居敬造,1992,台南州新化油田調查報告,台灣總督府殖產局,609,29。

    無法下載圖示 校內:2026-08-23公開
    校外:2026-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE