簡易檢索 / 詳目顯示

研究生: 黃國淵
Huang, Kuo-Yuan
論文名稱: IL-19及IL-20和椎間盤受傷的關係
The Association of IL-19 and IL-20 with Intervertebral Disc Injury
指導教授: 張明熙
Chang, Ming-Shi
林瑞模
Lin, Ruey-Mo
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 95
中文關鍵詞: IL-19IL-20BMP-2椎間盤突出退化性腰椎滑脫發炎退化中軸加壓載重核磁共振影像
外文關鍵詞: IL-19, IL-20, BMP-2, intervertebral disc herniation, degenerative lumbar spondylolisthesis, inflammation, degeneration, axially-loaded MRI
相關次數: 點閱:184下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究一、IL-19, IL-20在椎間盤突出及腰椎退化性滑脫所扮演的角色
    椎間盤突出後引發的發炎反應被認為是引起下背痛和坐骨神經痛的主要原因。新的細胞素IL-19和IL-20,屬於 IL-10家族,涉入各種不同的發炎性疾病。 然而,目前並無研究顯示IL-19和 IL-20如何影響椎間盤傷害後的發炎反應,癒合過程和脊柱的退化。我們的研究發現,IL-20和其受體表現在人類的椎間盤突出組織及培養出的椎間盤細胞中。椎間盤細胞上有 IL-20受體而且可以被IL-20所作用。在體外實驗中,IL-1β可誘發椎間盤細胞表現IL-20,而且IL-20聯合IL-1β可以誘發椎間盤細胞表現各種不同細胞素、趨化因子、血管新生因子及基質金屬蛋白酵素(matrix metalloproteinases;MMPs)。因此,IL-20連同IL-1β在椎間盤受傷後會造成發炎反應的增強,IL-20可能與椎間盤突出的病理機轉有關。退化性的腰椎滑脫是起源於椎間盤受傷,通常發生在 L4/L5節,因脊椎面關節鎖定機制失效後發生。造成退化性的腰椎滑脫症狀的因子很多,包括脊柱的不穩定、神經壓迫的程度和發炎反應等。然而在臨床的研究中,退化性的腰椎滑脫的症狀並不全然與患者的核磁共振影像上脊柱退化及神經壓迫的嚴重度有相關,因此發炎反應可能在退化性腰椎滑脫的致病機轉扮演一個重要的角色;儘管如此,對於IL-19 和 IL-20是否表現於退化性腰椎滑脫的組織及其病理生理學功能的研究至今還仍是未知。因此,我們探討IL-19及IL-20是否與退化性的腰椎滑脫的病理機轉有關。我們發現從退化性的腰椎滑脫患者手術中取得的檢體中,IL-19、IL-20、IL-20R1、IL-20R2、TNF-α、IL-1β和MCP-1會共同表現在退化的椎間盤、小面關節和黃韌帶組織的組織樣本中。IL-19及IL-20的表現與發炎性細胞素TNF-α和IL-1β的表現及趨化因子MCP-1和IL-8的表現有關。在體外實驗,IL-19 和 IL-20在CoCl2 模擬的缺氧情況之下,對退化性的腰椎滑脫的病患的退化椎間盤組織培養所得的人類椎間盤細胞,會誘發促炎細胞素、趨化因子的表現及血管新生的反應。因此,IL-19和IL-20在退化性的腰椎滑脫的病患的椎間盤、小面關節和黃韌帶組織上,可能會促進發炎反應的過程,因此IL-19和IL-20可能參與退化性的腰椎滑脫的致病機轉。

    研究二、椎間盤內加入RhBMP-2對受傷之椎間盤生體內的影響
    RhBMP-2,是一個很強效的骨骼誘導及軟骨誘導因子,已經為美國食品藥物管理局核准可以使用於人類脊柱的前融合手術,也可以修復受傷的軟骨。我們發現BMP-2表現在人類椎間盤突出的組織上。然而,rhBMP-2對受傷的椎間盤組織之體內反應研究的很少。我們的研究發現在兔子椎間盤受傷之動物模式中,受傷的椎間盤區域會出現各種不同程度的退化;而接受rhBMP-2處理的組別出現較嚴重的退化如骨刺生成。病理組織的研究發現椎間盤受傷之後,rhBMP-2會促進血管新生和發炎反應;這兩個反應是骨骼融合過程的最初兩個階段。因此,rhBMP-2 可能與椎間盤受傷後的傷害反應,癒合過程及後續之脊柱退化有關。

    研究三、影響退化性腰椎滑脫病患身體失能及生理功能的因子
    中軸加壓載重之核磁共振影像檢查是對於偵測脊椎疾病的動態或隱藏的變化很有用的診斷工具,它可以模擬直立時腰椎所承受的重力及中軸加壓狀態。除了IL-19和IL-20在退化性腰椎滑脫的發炎反應所扮演的角色外,我們希望藉由中軸加壓載重之核磁共振檢查,進一步去分析與退化性腰椎滑脫病患身體失能及生理功能有關的重要生物力學因子及探討中軸加壓載重對脊柱及脊椎管腔形態學上的影響。所有病患接受未加壓及中軸加壓的核磁共振檢查。我們量測核磁共振影像的預測變數包括:L4-5受壓前後椎間盤高度變化、椎體間位移變化、椎間盤角度變化、硬脊膜橫斷面面積的變化及L1-5加壓前及加壓後腰椎脊柱前凸的曲線角。我們發現:L4-5 退化性腰椎滑脫的患者,接受中軸加壓載重核磁共振影像的檢查,發現L4-5椎間盤角度的不穩定和身體的失能及生理功能有相關;而加壓後的腰椎脊柱前凸的曲線角也和L4-5 退化性腰椎滑脫患者的生理功能具有好的相關性。L4-5的椎間盤角度變化可以是預測L4-5 退化性腰椎滑脫的患者失能的良好指標。
    總結來說,我們發現在椎間盤受傷之後,IL-19、IL-20和BMP-2是調控發炎、癒合過程和脊柱的退化的關鍵因素;我們也發現椎間盤角度的不穩定與退化性腰椎滑脫的患者身體的失能及生理功能有相關。

    Study 1. The Roles of IL-19, IL-20 on Intervertebral Disc Herniation and Degenerative Lumbar Spondylolisthesis
    The inflammatory reaction after intervertebral disc herniation (HIVD) was considered as the major cause of low back pain and sciatica. IL-19 and IL-20, members of IL-10 family, are involved in various inflammatory diseases. However, little is known on how IL-19 and IL-20 affect the inflammation, healing process, and degeneration of spine after intervertebral disc injury. We reported the expression of IL-20 and its receptors in the primarily cultured disc cells as well as in human herniated intervertebral disc (HIVD) tissues. Disc cells express IL-20 receptors and are targeted by IL-20. In vitro, IL-1β induced the expression of IL-20, and IL-20 combined with IL-1β induced the expression of various cytokines, chemokines, angiogenetic factors, and matrix metalloproteinases (MMPs) in human disc cells. Therefore, IL-20 together with IL-1β enhances the inflammatory process after disc injury, and IL-20 may contribute to the pathogenesis of HIVD. Degenerative lumbar spondylolisthesis (DLS) results from disc injury, which usually occurs at the L4/L5 level after the facet-joint locking mechanism fails. The etiology of DLS is multifactorial, and includes spinal instability, neurological compromise and inflammation. In clinical practice, symptoms are not well correlated with the severity of degeneration and neural compression on MRIs of patients with DLS. Inflammation may play an important role in the pathogenesis of DLS; however, expression of IL-19 and IL-20 and their pathophysiological function in DLS has not been explored. Thus, we explored if IL-19 and IL-20 were associated with DLS. We found that IL-19, IL-20, IL-20R1 and IL-20R2, TNF-α, IL-1β and MCP-1 were co-localized in tissue samples of degenerated discs, facet joints, and ligamentum flavum retrieved from patients with DLS. The expression of IL-19 and IL-20 is associated with the expression of the inflammatory cytokines, TNF-α and IL-1β and the chemokines, MCP-1 and IL-8. In vitro, IL-19 and IL-20 induced the expression of proinflammatory cytokines, chemokine, and angiogenesis under CoCl2-mimicked hypoxia condition in the primarily cultured human disc cells, which isolated from degenerated disc tissues of patients with DLS. Therefore, IL-19 and IL-20 may contribute to the inflammatory process in discs, facet joints, and the ligamentum flavum in patients with DLS;IL-19 and IL-20 may be involved in the pathogenesis of DLS.

    Study 2. The in vivo Biological Effects of Intra-discal RhBMP-2 on the Injured Intervertebral Disc
    RhBMP-2, a potent osteoinductive and chondroinductive factor, has been approved for use in human anterior spinal fusion and can promote cartilage repair. We found that BMP-2 can be expressed in the human herniated disc specimen. However, the in vivo response of intra-discal rhBMP-2 on the injured IVDs is not clear. We found that various degrees of degenerative change around the injured disc space in our rabbit disc injury model. More severe spondylosis, such as spur formation, was found in the groups treated with rhBMP-2. The pathological findings revealed that rhBMP-2 promotes angiogenesis and inflammation after disc injury; which are known as the first two stages of bone incorporation for fusion. Therefore, rhBMP-2 might contribute to the injury response, healing process and subsequent degeneration after disc injury.

    Study 3. Factors Affecting Disability and Physical Function in Degenerative Lumbar Spondylolisthesis
    Axially-loaded magnetic resonance image (MRI) is a useful diagnostic tool, enabling detection of dynamic or occult changes of spinal disorders by simulating the upright position under normal gravity and mimicking the condition of axial compression in the lumbar spine. Except the roles of IL-19 and IL-20 in the inflammation process of degenerative lumbar spondylolisthesis (DLS), we aimed to further analyze the critical biomechanical factors responsible for the disability and physical function of patients with DLS using axially-loaded MRI, and to investigate the effect of axial loading on the morphology of the spine and the spinal canal. All patients underwent unloaded and axially-loaded MRI. We measured the predictors on MRI, including the differences of disc height (DH), sagittal translation (ST), segmental angulation (SA), and dural sac cross-sectional area (DCSA) at L4-5 between the unloaded and axially-loaded condition, as well as pre-load and post-load lumbar lordotic angles (LLA) at L1-5. We discovered that angular instability is correlated with physical disability and physical function for patients with L4-5 DLS in an axially-loaded magnetic resonance image (MRI); the post-load lumbar lordotic curve angle is also well correlated with physical function for patients with L4-5 DLS. Segmental angulation of L4-5 can be a good indicator of disability in patients with L4-5 DLS.
    In conclusion, we discovered that IL-19, IL-20, and BMP-2 may be the key factors to modulate inflammation, healing process and degeneration of spine after intervertebral disc injury. Besides, we also discovered that angular instability of intervertebral disc is correlated with physical disability and physical function for patients with L4-5 DLS.

    中文摘要 I Abstract IV 誌謝 VII Table of Contents VIII List of Tables XII List of Figures XIV Abbreviation List XVI Study 1. The roles of IL-19, IL-20 on intervertebral disc herniation and degenerative lumbar spondylolisthesis 1 I. Background 1 HIVD and low back pain 1 HIVD and inflammation 1 Degenerative Lumbar Spondylolisthesis (DLS) 2 Degenerative lumbar spondylolisthesis (DLS) and inflammation 3 IL-19 and IL-20, members of IL-10 family 3 II. Rationale 5 III. Specific aims 7 To study the role of IL-20 in human intervertebral disc herniation 7 To study the roles of IL-19 and IL-20 in the pathogenesis of degenerative lumbar spondylolisthesis (DLS) 7 IV. Materials and Methods 8 Reagents, antibody and protein preparation in study of IL-20 with HIVD 8 Reagents and antibody in study of IL-19, IL-20 with DLS 8 Patients 8 HIVD Patients. 8 DLS Patients. 8 Immunohistochemical staining of human herniated intervertebral disc tissues 10 Primary culture of human intervertebral disc cells in HIVD patients 10 Immunohistochemical staining of human disc cells 10 Detection of gene expression in disc cells treated with IL-20 alone and in combination with IL-1β and IL-1β alone, using reverse transcription– polymerase chain reaction (RT-PCR) 11 ELISA analysis of cytokines expression 11 Immunohistochemical staining of disc, facet joint, and ligamentum flavum in the DLS patients 12 Primary culture of human intervertebral disc cells in DLS patients 12 Detection of the effect of IL-19 or IL-20 on the gene expressions of proinflammatory cytokines (TNF-α, IL-1β,and IL-6), chemokines (IL-8, and MCP-1), and angiogenetic factor (VEGF) in disc cells under hypoxia condition using real-time quantitative PCR 12 Statistical Analysis 13 V. Results 14 The role of IL-20 in human intervertebral disc herniation 14 The expression of IL-20 and its receptors in human IVD tissue 14 The expression of IL-20 and its receptors in primarily cultured disc cells 14 IL-20 combined with IL-1β induced multiple gene expression in primary disc cells 15 The roles of IL-19 and IL-20 in degenerative lumbar spondylolisthesis 16 Immunohistochemical staining 16 Expression and localization of TNF-α, IL-1β and MCP-1 positive cells 17 Correlative Analyses 18 Up-regulation of proinflammatory cytokines and chemokine in disc cells by IL-19 and IL-20 18 VI. Discussion 20 The role of IL-20 in human intervertebral disc herniation 20 The roles of IL-19 and IL-20 in degenerative lumbar spondylolisthesis 21 VII. Conclusion 24 Study 2. The in vivo biological effects of intra-discal rhBMP-2 on the injured intervertebral disc 25 I. Background 25 II. Rationale 27 III. Specific aims 28 To study the role of BMP-2 in the injured intervertebral disc 28 IV. Materials and Methods 29 Animal experimental procedures 29 Radiographic Analysis 30 Histopathologic Analysis 30 Fusion Assessment 31 Statistical Analysis 31 V. Results 32 Gross Findings and Fusion Status 32 Radiographic Findings 32 Histopathologic Findings 32 VI. Discussion 34 VII. Conclusion 38 Study 3. Factors affecting disability and physical function in degenerative lumbar spondylolisthesis 39 I. Background 39 II. Rationale 41 III. Specific aims 42 To study factors affecting physical disability and physical function in degenerative lumbar spondylolisthesis under the axially-loaded MRI 42 IV. Materials and Methods 43 DLS Patients 43 Axially-loaded magnetic resonance imaging (MRI) 43 Spinal parameters measured from axially-loaded MRI 44 Statistical analysis 45 V. Results 46 VI. Discussion 48 VII. Conclusion 52 Tables 53 Figures and figure legends 66 References 79 Publication 95

    1. Luoma, K., Riihimaki, H., Luukkonen, R., Raininko, R., Viikari-Juntura, E., and Lamminen, A. 2000. Low back pain in relation to lumbar disc degeneration. Spine 25:487-492.
    2. Deyo, R.A., and Tsui-Wu, Y.J. 1987. Descriptive epidemiology of low-back pain and its related medical care in the United States. Spine 12:264-268.
    3. Akeson, W.H., Woo, S.L., Taylor, T.K., Ghosh, P., and Bushell, G.R. 1977. Biomechanics and biochemistry of the intervertebral disks: the need for correlation studies. Clin Orthop Relat Res:133-140.
    4. Cs-Szabo, G., Ragasa-San Juan, D., Turumella, V., Masuda, K., Thonar, E.J., and An, H.S. 2002. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine 27:2212-2219.
    5. Boos, N., Rieder, R., Schade, V., Spratt, K.F., Semmer, N., and Aebi, M. 1995. 1995 Volvo Award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 20:2613-2625.
    6. Woertgen, C., Rothoerl, R.D., and Brawanski, A. 2000. Influence of macrophage infiltration of herniated lumbar disc tissue on outcome after lumbar disc surgery. Spine 25:871-875.
    7. Gronblad, M., Virri, J., Tolonen, J., Seitsalo, S., Kaapa, E., Kankare, J., Myllynen, P., and Karaharju, E.O. 1994. A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine 19:2744-2751.
    8. Doita, M., Kanatani, T., Harada, T., and Mizuno, K. 1996. Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine 21:235-241.
    9. Burke, J.G., RW, G.W., Conhyea, D., McCormack, D., Dowling, F.E., Walsh, M.G., and Fitzpatrick, J.M. 2003. Human nucleus pulposis can respond to a pro-inflammatory stimulus. Spine 28:2685-2693.
    10. Burke, J.G., Watson, R.W., McCormack, D., Dowling, F.E., Walsh, M.G., and Fitzpatrick, J.M. 2002. Spontaneous production of monocyte chemoattractant protein-1 and interleukin-8 by the human lumbar intervertebral disc. Spine 27:1402-1407.
    11. Kikuchi, T., Nakamura, T., Ikeda, T., Ogata, H., and Takagi, K. 1998. Monocyte chemoattractant protein-1 in the intervertebral disc. A histologic experimental model. Spine 23:1091-1099.
    12. Yoshida, M., Nakamura, T., Kikuchi, T., Takagi, K., and Matsukawa, A. 2002. Expression of monocyte chemoattractant protein-1 in primary cultures of rabbit intervertebral disc cells. J Orthop Res 20:1298-1304.
    13. Takahashi, H., Suguro, T., Okazima, Y., Motegi, M., Okada, Y., and Kakiuchi, T. 1996. Inflammatory cytokines in the herniated disc of the lumbar spine. Spine 21:218-224.
    14. Igarashi, T., Kikuchi, S., Shubayev, V., and Myers, R.R. 2000. 2000 Volvo Award winner in basic science studies: Exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine 25:2975-2980.
    15. Virri, J., Gronblad, M., Seitsalo, S., Habtemariam, A., Kaapa, E., and Karaharju, E. 2001. Comparison of the prevalence of inflammatory cells in subtypes of disc herniations and associations with straight leg raising. Spine 26:2311-2315.
    16. Furusawa, N., Baba, H., Miyoshi, N., Maezawa, Y., Uchida, K., Kokubo, Y., and Fukuda, M. 2001. Herniation of cervical intervertebral disc: immunohistochemical examination and measurement of nitric oxide production. Spine 26:1110-1116.
    17. Kang, J.D., Georgescu, H.I., McIntyre-Larkin, L., Stefanovic-Racic, M., Donaldson, W.F., 3rd, and Evans, C.H. 1996. Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine 21:271-277.
    18. Ahn, S.H., Cho, Y.W., Ahn, M.W., Jang, S.H., Sohn, Y.K., and Kim, H.S. 2002. mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine 27:911-917.
    19. Haro, H., Shinomiya, K., Komori, H., Okawa, A., Saito, I., Miyasaka, N., and Furuya, K. 1996. Upregulated expression of chemokines in herniated nucleus pulposus resorption. Spine 21:1647-1652.
    20. Miyahara, K., Ishida, T., Hukuda, S., Horiike, K., Okamoto, M., and Tojo, H. 1996. Human group II phospholipase A2 in normal and diseased intervertebral discs. Biochim Biophys Acta 1316:183-190.
    21. Barksby, H.E., Hui, W., Wappler, I., Peters, H.H., Milner, J.M., Richards, C.D., Cawston, T.E., and Rowan, A.D. 2006. Interleukin-1 in combination with oncostatin M up-regulates multiple genes in chondrocytes: implications for cartilage destruction and repair. Arthritis Rheum 54:540-550.
    22. Le Maitre, C.L., Freemont, A.J., and Hoyland, J.A. 2005. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther 7:R732-745.
    23. Le Maitre, C.L., Hoyland, J.A., and Freemont, A.J. 2007. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1beta and TNFalpha expression profile. Arthritis Res Ther 9:R77.
    24. Fritz, J.M., Delitto, A., Welch, W.C., and Erhard, R.E. 1998. Lumbar spinal stenosis: a review of current concepts in evaluation, management, and outcome measurements. Arch Phys Med Rehabil 79:700-708.
    25. Jayakumar, P., Nnadi, C., Saifuddin, A., Macsweeney, E., and Casey, A. 2006. Dynamic degenerative lumbar spondylolisthesis: diagnosis with axial loaded magnetic resonance imaging. Spine 31:E298-301.
    26. Morgan, F.P., and King, T. 1957. Primary instability of lumbar vertebrae as a common cause of low back pain. J Bone Joint Surg Br 39-B:6-22.
    27. Huang, K.Y., Lin, R.M., Lee, Y.L., and Li, J.D. 2009. Factors affecting disability and physical function in degenerative lumbar spondylolisthesis of L4-5: evaluation with axially loaded MRI. Eur Spine J 18:1851-1857.
    28. Huang, K.Y., Lin, R.M., Chen, W.Y., Lee, C.L., Yan, J.J., and Chang, M.S. 2008. IL-20 may contribute to the pathogenesis of human intervertebral disc herniation. Spine 33:2034-2040.
    29. Go, N.F., Castle, B.E., Barrett, R., Kastelein, R., Dang, W., Mosmann, T.R., Moore, K.W., and Howard, M. 1990. Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172:1625-1631.
    30. Moore, K.W., de Waal Malefyt, R., Coffman, R.L., and O'Garra, A. 2001. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683-765.
    31. Gallagher, G., Dickensheets, H., Eskdale, J., Izotova, L.S., Mirochnitchenko, O.V., Peat, J.D., Vazquez, N., Pestka, S., Donnelly, R.P., and Kotenko, S.V. 2000. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 1:442-450.
    32. Blumberg, H., Conklin, D., Xu, W.F., Grossmann, A., Brender, T., Carollo, S., Eagan, M., Foster, D., Haldeman, B.A., Hammond, A., et al. 2001. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104:9-19.
    33. Dumoutier, L., Louahed, J., and Renauld, J.C. 2000. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. J Immunol 164:1814-1819.
    34. Jiang, H., Lin, J.J., Su, Z.Z., Goldstein, N.I., and Fisher, P.B. 1995. Subtraction hybridization identifies a novel melanoma differentiation associated gene, mda-7, modulated during human melanoma differentiation, growth and progression. Oncogene 11:2477-2486.
    35. Knappe, A., Hor, S., Wittmann, S., and Fickenscher, H. 2000. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 74:3881-3887.
    36. Chen, W.Y., Cheng, B.C., Jiang, M.J., Hsieh, M.Y., and Chang, M.S. 2006. IL-20 is expressed in atherosclerosis plaques and promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 26:2090-2095.
    37. Hsu, Y.H., Li, H.H., Hsieh, M.Y., Liu, M.F., Huang, K.Y., Chin, L.S., Chen, P.C., Cheng, H.H., and Chang, M.S. 2006. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54:2722-2733.
    38. Wei, C.C., Hsu, Y.H., Li, H.H., Wang, Y.C., Hsieh, M.Y., Chen, W.Y., Hsing, C.H., and Chang, M.S. 2006. IL-20: biological functions and clinical implications. J Biomed Sci 13:601-612.
    39. Hsing, C.H., Ho, C.L., Chang, L.Y., Lee, Y.L., Chuang, S.S., and Chang, M.S. 2006. Tissue microarray analysis of interleukin-20 expression. Cytokine 35:44-52.
    40. Parrish-Novak, J., Xu, W., Brender, T., Yao, L., Jones, C., West, J., Brandt, C., Jelinek, L., Madden, K., McKernan, P.A., et al. 2002. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277:47517-47523.
    41. Liao, S.C., Cheng, Y.C., Wang, Y.C., Wang, C.W., Yang, S.M., Yu, C.K., Shieh, C.C., Cheng, K.C., Lee, M.F., Chiang, S.R., et al. 2004. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 173:6712-6718.
    42. Liao, Y.C., Liang, W.G., Chen, F.W., Hsu, J.H., Yang, J.J., and Chang, M.S. 2002. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 169:4288-4297.
    43. Hsing, C.H., Li, H.H., Hsu, Y.H., Ho, C.L., Chuang, S.S., Lan, K.M., and Chang, M.S. 2008. The distribution of interleukin-19 in healthy and neoplastic tissue. Cytokine 44:221-228.
    44. Hsing, C.H., Hsieh, M.Y., Chen, W.Y., Cheung So, E., Cheng, B.C., and Chang, M.S. 2006. Induction of interleukin-19 and interleukin-22 after cardiac surgery with cardiopulmonary bypass. Ann Thorac Surg 81:2196-2201.
    45. Hsing, C.H., Hsu, C.C., Chen, W.Y., Chang, L.Y., Hwang, J.C., and Chang, M.S. 2007. Expression of IL-19 correlates with Th2 cytokines in uraemic patients. Nephrol Dial Transplant 22:2230-2238.
    46. Li, H.H., Lin, Y.C., Chen, P.J., Hsiao, C.H., Lee, J.Y., Chen, W.C., Tzung, T.Y., Wu, J.C., and Chang, M.S. 2005. Interleukin-19 upregulates keratinocyte growth factor and is associated with psoriasis. Br J Dermatol 153:591-595.
    47. Hsing, C.H., Chiu, C.J., Chang, L.Y., Hsu, C.C., and Chang, M.S. 2008. IL-19 is involved in the pathogenesis of endotoxic shock. Shock 29:7-15.
    48. Otkjaer, K., Kragballe, K., Johansen, C., Funding, A.T., Just, H., Jensen, U.B., Sorensen, L.G., Norby, P.L., Clausen, J.T., and Iversen, L. 2007. IL-20 gene expression is induced by IL-1beta through mitogen-activated protein kinase and NF-kappaB-dependent mechanisms. J Invest Dermatol 127:1326-1336.
    49. Wei, C.C., Chen, W.Y., Wang, Y.C., Chen, P.J., Lee, J.Y., Wong, T.W., Chen, W.C., Wu, J.C., Chen, G.Y., Chang, M.S., et al. 2005. Detection of IL-20 and its receptors on psoriatic skin. Clin Immunol 117:65-72.
    50. Fairbank, J.C., Couper, J., Davies, J.B., and O'Brien, J.P. 1980. The Oswestry low back pain disability questionnaire. Physiotherapy 66:271-273.
    51. Stucki, G., Daltroy, L., Liang, M.H., Lipson, S.J., Fossel, A.H., and Katz, J.N. 1996. Measurement properties of a self-administered outcome measure in lumbar spinal stenosis. Spine 21:796-803.
    52. Ikeda, T., Nakamura, T., Kikuchi, T., Umeda, S., Senda, H., and Takagi, K. 1996. Pathomechanism of spontaneous regression of the herniated lumbar disc: histologic and immunohistochemical study. J Spinal Disord 9:136-140.
    53. Baggiolini, M., Dewald, B., and Moser, B. 1994. Interleukin-8 and related chemotactic cytokines--CXC and CC chemokines. Adv Immunol 55:97-179.
    54. Hsieh, M.Y., Chen, W.Y., Jiang, M.J., Cheng, B.C., Huang, T.Y., and Chang, M.S. 2006. Interleukin-20 promotes angiogenesis in a direct and indirect manner. Genes Immun 7:234-242.
    55. Koike, Y., Uzuki, M., Kokubun, S., and Sawai, T. 2003. Angiogenesis and inflammatory cell infiltration in lumbar disc herniation. Spine 28:1928-1933.
    56. Haro, H., Kato, T., Komori, H., Osada, M., and Shinomiya, K. 2002. Vascular endothelial growth factor (VEGF)-induced angiogenesis in herniated disc resorption. J Orthop Res 20:409-415.
    57. Kato, T., Haro, H., Komori, H., and Shinomiya, K. 2004. Sequential dynamics of inflammatory cytokine, angiogenesis inducing factor and matrix degrading enzymes during spontaneous resorption of the herniated disc. J Orthop Res 22:895-900.
    58. Igarashi, A., Kikuchi, S., and Konno, S. 2007. Correlation between inflammatory cytokines released from the lumbar facet joint tissue and symptoms in degenerative lumbar spinal disorders. J Orthop Sci 12:154-160.
    59. Hilibrand, A.S., and Robbins, M. 2004. Adjacent segment degeneration and adjacent segment disease: the consequences of spinal fusion? Spine J 4:190S-194S.
    60. Park, P., Garton, H.J., Gala, V.C., Hoff, J.T., and McGillicuddy, J.E. 2004. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine 29:1938-1944.
    61. Diwan, A.D., Parvataneni, H.K., Khan, S.N., Sandhu, H.S., Girardi, F.P., and Cammisa, F.P., Jr. 2000. Current concepts in intervertebral disc restoration. Orthop Clin North Am 31:453-464.
    62. Urist, M.R. 1965. Bone: formation by autoinduction. Science 150:893-899.
    63. Wozney, J.M., Rosen, V., Celeste, A.J., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M., and Wang, E.A. 1988. Novel regulators of bone formation: molecular clones and activities. Science 242:1528-1534.
    64. Luyten, F.P., Cunningham, N.S., Ma, S., Muthukumaran, N., Hammonds, R.G., Nevins, W.B., Woods, W.I., and Reddi, A.H. 1989. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 264:13377-13380.
    65. Wozney, J.M. 1992. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32:160-167.
    66. Burkus, J.K., Gornet, M.F., Dickman, C.A., and Zdeblick, T.A. 2002. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337-349.
    67. Einhorn, T.A. 2003. Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am 85-A Suppl 3:82-88.
    68. Chen, D., Zhao, M., and Mundy, G.R. 2004. Bone morphogenetic proteins. Growth Factors 22:233-241.
    69. Li, R.H., Bouxsein, M.L., Blake, C.A., D'Augusta, D., Kim, H., Li, X.J., Wozney, J.M., and Seeherman, H.J. 2003. rhBMP-2 injected in a calcium phosphate paste (alpha-BSM) accelerates healing in the rabbit ulnar osteotomy model. J Orthop Res 21:997-1004.
    70. Matsuo, T., Sugita, T., Kubo, T., Yasunaga, Y., Ochi, M., and Murakami, T. 2003. Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res A 66:747-754.
    71. Burkus, J.K., Dorchak, J.D., and Sanders, D.L. 2003. Radiographic assessment of interbody fusion using recombinant human bone morphogenetic protein type 2. Spine 28:372-377.
    72. Govender, S., Csimma, C., Genant, H.K., Valentin-Opran, A., Amit, Y., Arbel, R., Aro, H., Atar, D., Bishay, M., Borner, M.G., et al. 2002. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84-A:2123-2134.
    73. van Beuningen, H.M., Glansbeek, H.L., van der Kraan, P.M., and van den Berg, W.B. 1998. Differential effects of local application of BMP-2 or TGF-beta 1 on both articular cartilage composition and osteophyte formation. Osteoarthritis Cartilage 6:306-317.
    74. Glansbeek, H.L., van Beuningen, H.M., Vitters, E.L., Morris, E.A., van der Kraan, P.M., and van den Berg, W.B. 1997. Bone morphogenetic protein 2 stimulates articular cartilage proteoglycan synthesis in vivo but does not counteract interleukin-1alpha effects on proteoglycan synthesis and content. Arthritis Rheum 40:1020-1028.
    75. Nakagawa, T., Sugiyama, T., Shimizu, K., Murata, T., Narita, M., Nakamura, S., and Tagawa, T. 2003. Characterization of the development of ectopic chondroid/bone matrix and chondrogenic/osteogenic cells during osteoinduction by rhBMP-2: a histochemical and ultrastructural study. Oral Dis 9:255-263.
    76. Fukui, N., Purple, C.R., and Sandell, L.J. 2001. Cell biology of osteoarthritis: the chondrocyte's response to injury. Curr Rheumatol Rep 3:496-505.
    77. Fukui, N., Zhu, Y., Maloney, W.J., Clohisy, J., and Sandell, L.J. 2003. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am 85-A Suppl 3:59-66.
    78. Sailor, L.Z., Hewick, R.M., and Morris, E.A. 1996. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture. J Orthop Res 14:937-945.
    79. Tim Yoon, S., Su Kim, K., Li, J., Soo Park, J., Akamaru, T., Elmer, W.A., and Hutton, W.C. 2003. The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine 28:1773-1780.
    80. Lipson, S.J., and Muir, H. 1981. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration. Spine 6:194-210.
    81. Masuda, K., Aota, Y., Muehleman, C., Imai, Y., Okuma, M., Thonar, E.J., Andersson, G.B., and An, H.S. 2005. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 30:5-14.
    82. Singh, K., Masuda, K., and An, H.S. 2005. Animal models for human disc degeneration. Spine J 5:267S-279S.
    83. Sobajima, S., Kompel, J.F., Kim, J.S., Wallach, C.J., Robertson, D.D., Vogt, M.T., Kang, J.D., and Gilbertson, L.G. 2005. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine 30:15-24.
    84. Itoh, H., Ebara, S., Kamimura, M., Tateiwa, Y., Kinoshita, T., Yuzawa, Y., and Takaoka, K. 1999. Experimental spinal fusion with use of recombinant human bone morphogenetic protein 2. Spine 24:1402-1405.
    85. Barnes, B., Boden, S.D., Louis-Ugbo, J., Tomak, P.R., Park, J.S., Park, M.S., and Minamide, A. 2005. Lower dose of rhBMP-2 achieves spine fusion when combined with an osteoconductive bulking agent in non-human primates. Spine 30:1127-1133.
    86. Boden, S.D., Schimandle, J.H., and Hutton, W.C. 1995. An experimental lumbar intertransverse process spinal fusion model. Radiographic, histologic, and biomechanical healing characteristics. Spine 20:412-420.
    87. Huang, R.C., Khan, S.N., Sandhu, H.S., Metzl, J.A., Cammisa, F.P., Jr., Zheng, F., Sama, A.A., and Lane, J.M. 2005. Alendronate inhibits spine fusion in a rat model. Spine 30:2516-2522.
    88. Hidaka, C., Goshi, K., Rawlins, B., Boachie-Adjei, O., and Crystal, R.G. 2003. Enhancement of spine fusion using combined gene therapy and tissue engineering BMP-7-expressing bone marrow cells and allograft bone. Spine 28:2049-2057.
    89. Erulkar, J.S., Grauer, J.N., Patel, T.C., and Panjabi, M.M. 2001. Flexibility analysis of posterolateral fusions in a New Zealand white rabbit model. Spine 26:1125-1130.
    90. Chung, S.A., Khan, S.N., and Diwan, A.D. 2003. The molecular basis of intervertebral disk degeneration. Orthop Clin North Am 34:209-219.
    91. Walker, M.H., and Anderson, D.G. 2004. Molecular basis of intervertebral disc degeneration. Spine J 4:158S-166S.
    92. Issack, P.S., and DiCesare, P.E. 2003. Recent advances toward the clinical application of bone morphogenetic proteins in bone and cartilage repair. Am J Orthop 32:429-436.
    93. Date, T., Doiguchi, Y., Nobuta, M., and Shindo, H. 2004. Bone morphogenetic protein-2 induces differentiation of multipotent C3H10T1/2 cells into osteoblasts, chondrocytes, and adipocytes in vivo and in vitro. J Orthop Sci 9:503-508.
    94. Zur Nieden, N.I., Kempka, G., Rancourt, D.E., and Ahr, H.J. 2005. Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev Biol 5:1.
    95. Cao, X., and Chen, D. 2005. The BMP signaling and in vivo bone formation. Gene 357:1-8.
    96. Sellers, R.S., Peluso, D., and Morris, E.A. 1997. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am 79:1452-1463.
    97. Subach, B.R., Haid, R.W., Rodts, G.E., and Kaiser, M.G. 2001. Bone morphogenetic protein in spinal fusion: overview and clinical update. Neurosurg Focus 10:E3.
    98. Samartzis, D., Khanna, N., Shen, F.H., and An, H.S. 2005. Update on bone morphogenetic proteins and their application in spine surgery. J Am Coll Surg 200:236-248.
    99. Boden, S.D., and Sumner, D.R. 1995. Biologic factors affecting spinal fusion and bone regeneration. Spine 20:102S-112S.
    100. Cheng, H., Jiang, W., Phillips, F.M., Haydon, R.C., Peng, Y., Zhou, L., Luu, H.H., An, N., Breyer, B., Vanichakarn, P., et al. 2003. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A:1544-1552.
    101. Rutherford, R.B., Moalli, M., Franceschi, R.T., Wang, D., Gu, K., and Krebsbach, P.H. 2002. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng 8:441-452.
    102. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., and Suda, T. 1994. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127:1755-1766.
    103. Cowan, C.M., Aalami, O.O., Shi, Y.Y., Chou, Y.F., Mari, C., Thomas, R., Quarto, N., Nacamuli, R.P., Contag, C.H., Wu, B., et al. 2005. Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover. Tissue Eng 11:645-658.
    104. De Luca, F., Barnes, K.M., Uyeda, J.A., De-Levi, S., Abad, V., Palese, T., Mericq, V., and Baron, J. 2001. Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142:430-436.
    105. Feng, J.Q., Xing, L., Zhang, J.H., Zhao, M., Horn, D., Chan, J., Boyce, B.F., Harris, S.E., Mundy, G.R., and Chen, D. 2003. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro. J Biol Chem 278:29130-29135.
    106. Kobayashi, T., Lyons, K.M., McMahon, A.P., and Kronenberg, H.M. 2005. BMP signaling stimulates cellular differentiation at multiple steps during cartilage development. Proc Natl Acad Sci U S A 102:18023-18027.
    107. Kim, D.J., Moon, S.H., Kim, H., Kwon, U.H., Park, M.S., Han, K.J., Hahn, S.B., and Lee, H.M. 2003. Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine 28:2679-2684.
    108. Park, J.S., and Nagata, K. 2004. [BMP and LMP-1 for intervertebral disc regeneration]. Clin Calcium 14:76-78.
    109. Kaps, C., Bramlage, C., Smolian, H., Haisch, A., Ungethum, U., Burmester, G.R., Sittinger, M., Gross, G., and Haupl, T. 2002. Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction. Arthritis Rheum 46:149-162.
    110. Suzuki, T., Bessho, K., Fujimura, K., Okubo, Y., Segami, N., and Iizuka, T. 2002. Regeneration of defects in the articular cartilage in rabbit temporomandibular joints by bone morphogenetic protein-2. Br J Oral Maxillofac Surg 40:201-206.
    111. Grunder, T., Gaissmaier, C., Fritz, J., Stoop, R., Hortschansky, P., Mollenhauer, J., and Aicher, W.K. 2004. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 12:559-567.
    112. Hogan, B.L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 10:1580-1594.
    113. Moser, M., Binder, O., Wu, Y., Aitsebaomo, J., Ren, R., Bode, C., Bautch, V.L., Conlon, F.L., and Patterson, C. 2003. BMPER, a novel endothelial cell precursor-derived protein, antagonizes bone morphogenetic protein signaling and endothelial cell differentiation. Mol Cell Biol 23:5664-5679.
    114. Raida, M., Clement, J.H., Leek, R.D., Ameri, K., Bicknell, R., Niederwieser, D., and Harris, A.L. 2005. Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131:741-750.
    115. Soini, J., Antti-Poika, I., Tallroth, K., Konttinen, Y.T., Honkanen, V., and Santavirta, S. 1991. Disc degeneration and angular movement of the lumbar spine: comparative study using plain and flexion-extension radiography and discography. J Spinal Disord 4:183-187.
    116. Cartolari, R., Argento, G., Cardello, P., Ortenzi, M., Petti, R., and Boni, S. 1998. Axial loaded computed tomography (AL-CT) and cine AL-CT. Rivista di Neuroradiologia 11:275-286.
    117. Hiwatashi, A., Danielson, B., Moritani, T., Bakos, R.S., Rodenhause, T.G., Pilcher, W.H., and Westesson, P.L. 2004. Axial loading during MR imaging can influence treatment decision for symptomatic spinal stenosis. AJNR Am J Neuroradiol 25:170-174.
    118. Willen, J., Danielson, B., Gaulitz, A., Niklason, T., Schonstrom, N., and Hansson, T. 1997. Dynamic effects on the lumbar spinal canal: axially loaded CT-myelography and MRI in patients with sciatica and/or neurogenic claudication. Spine 22:2968-2976.
    119. Danielson, B., and Willen, J. 2001. Axially loaded magnetic resonance image of the lumbar spine in asymptomatic individuals. Spine 26:2601-2606.
    120. Dupuis, P.R., Yong-Hing, K., Cassidy, J.D., and Kirkaldy-Willis, W.H. 1985. Radiologic diagnosis of degenerative lumbar spinal instability. Spine 10:262-276.
    121. Boden, S.D., and Wiesel, S.W. 1990. Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine 15:571-576.
    122. Hanley, E.N., Jr. 1995. The indications for lumbar spinal fusion with and without instrumentation. Spine 20:143S-153S.
    123. Danielson, B.I., Willen, J., Gaulitz, A., Niklason, T., and Hansson, T.H. 1998. Axial loading of the spine during CT and MR in patients with suspected lumbar spinal stenosis. Acta Radiol 39:604-611.
    124. Iguchi, T., Kanemura, A., Kasahara, K., Sato, K., Kurihara, A., Yoshiya, S., Nishida, K., Miyamoto, H., and Doita, M. 2004. Lumbar instability and clinical symptoms: which is the more critical factor for symptoms: sagittal translation or segment angulation? J Spinal Disord Tech 17:284-290.
    125. Fujiwara, A., Lim, T.H., An, H.S., Tanaka, N., Jeon, C.H., Andersson, G.B., and Haughton, V.M. 2000. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036-3044.
    126. Caputy, A.J., and Luessenhop, A.J. 1992. Long-term evaluation of decompressive surgery for degenerative lumbar stenosis. J Neurosurg 77:669-676.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE