簡易檢索 / 詳目顯示

研究生: 張家偉
Chang, Jia-Wei
論文名稱: 拉曼躍遷同調性之測量
The measurement of coherence in Raman transition
指導教授: 管培辰
Kuan, Pei-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 45
中文關鍵詞: 拉曼躍遷同調性拉姆齊干涉儀
外文關鍵詞: Coherent in Raman transition, Ramsey interferometry
相關次數: 點閱:96下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通常在做拉曼轉換(Raman transition)的時候,都會假設轉換是具有同調性質的,也就是說轉換後的原子,是在兩態之間具有相干態(coherent state)。然而一般在實驗上,測量拉曼轉換有多少比例由狀態A轉移到狀態B時,無法分別是轉換過程是在兩態之間具有相干態後,因為觀測而塌縮,亦或是從狀態A換到狀態B,之後被探測到而已。
    在此篇論文中,將會介紹利用雷射冷卻,讓銣(Rb85)原子冷卻,並透過拉比震盪(Rabi oscillation)以及光波拉曼(Optical Raman)混和的拉姆齊干涉儀(Ramsey interferometry),檢測原子經過拉曼之後的同調性質。為此利用磁光陷阱(Magneto-tptical trap),捕捉並冷卻原子團至約10μK,隨即利用拉比震盪製備量子相干態並打入與微波不同相位的光波拉曼,以此掃描不同情況下的機率分布,以反推原子經過光波拉曼的同調性。
    關鍵字:拉曼躍遷同調性、拉姆齊干涉儀

    In this thesis, we will introduce how to test the coherence of atom which is affected by a Raman transition. For this purpose, we build a Magneto-Optical trap system to capture and cool down atoms, which are Rubidium 85. After cooling, our atoms are cooled to 10 µK . Then, we prepare atoms in coherent state by using a Rabi oscillation. Finally, we inject a Raman pulse and scan the phases between Rabi oscillation and Raman transition to inference how the coherence of atom is. In the end, we demonstrate that Raman pulses with different direction of the external magnetic field will transfer atoms into states with different coherences.

    摘要 I 英文延伸摘要 II 致謝 VII 目錄 IX 1 緒論 1 1.1 雷射冷卻 1 1.1.1 都卜勒冷卻 1 1.1.2 薛西弗斯冷卻 3 1.1.3 暗光井 4 1.2 布洛赫球 4 1.3 拉曼轉換 6 1.3.1 雙能階拉曼 6 1.3.2 三能階拉曼 10 1.4 拉姆齊干涉儀 13 1.4.1 單一光源拉姆齊干涉儀 13 1.4.2 混和光源拉姆齊干涉儀 14 1.5 吹散光 17 2 實驗架設 18 2.1 銣原子能階 18 2.2 雷射鎖頻 20 2.3 雷射冷卻 21 2.3.1 冷卻光 21 2.3.2 幫浦光 23 2.3.3 磁光陷阱 24 2.3.4 冷卻時間序列 25 2.4 吹散光 26 2.5 拉曼系統 27 2.5.1 拉比震盪28 2.5.2 光波拉曼 28 2.6 拉姆齊干涉儀 30 3 實驗數據 32 3.1 冷卻原子 32 3.2 拉曼轉換 34 3.2.1 拉比震盪 34 3.2.2 光波拉曼 35 3.3 拉姆齊干涉儀 37 4 結論 39 5 未來展望 40 參考文獻 41 A 儀器架設 42 A.1 聲光調變控制系統 42 B 圖附錄 44 B.1 混合光源拉姆干涉儀模擬圖 44 B.2 電路設計圖 45

    [1] P Arora, SB Purnapatra, A Acharya, R Kumar, and A Sen Gupta. Measurement of temperature of atomic cloud using time-of-flight technique. Mapan, 27(1):31–39, 2012
    [2] David L Butts, Joseph M Kinast, Krish Kotru, Antonije M Radojevic, Brian P Timmons, and Richard E Stoner. Coherent population trapping in raman-pulse atom interferometry. Physical Review A, 84(4):043613, 2011.
    [3] Steven Chu, JE Bjorkholm, A Ashkin, and Alex Cable. Experimental observation of optically trapped atoms. Physical review letters, 57(3):314, 1986.
    [4] Jean Dalibard and Claude Cohen-Tannoudji. Laser cooling below the doppler limit by polarization gradients: simple theoretical models. JOSA B, 6(11):2023–2045, 1989.
    [5] Christopher J Foot et al. Atomic physics, volume 7. Oxford University Press, 2005.
    [6] EL Raab, M Prentiss, Alex Cable, Steven Chu, and David E Pritchard. Trapping of
    neutral sodium atoms with radiation pressure. Physical review letters, 59(23):2631, 1987.
    [7] Norman F Ramsey. A molecular beam resonance method with separated oscillating fields. Physical Review, 78(6):695, 1950.
    [8] Daniel Adam Steck. Rubidium 85 d line data. 2001.
    [9] I Yavin, M Weel, A Andreyuk, and A Kumarakrishnan. A calculation of the time-off-light distribution of trapped atoms. American Journal of Physics, 70(2):149–152, 2002.

    下載圖示 校內:2022-09-30公開
    校外:2022-09-30公開
    QR CODE